Herewith, we invite you to the joint meeting of ÖGOR and GOR working group “Practice of Mathematical Optimization” hosted by ÖBB (Österreichische Bundesbahnen). This is the first time that ÖGOR cooperates with GOR by organizing a joint meeting with the topic

Practice of Optimization in Transportation

The workshop will take place in Wien hosted by ÖBB on September 28 & 29, Thursday and Friday, 2023. The working language will be English to be inclusive for a non-German speaking audience. GOR members are warmly invited to attend also the meeting of ÖGOR, while all ÖGOR members are invited to attend the meeting of the GOR working group.

Note that the participation in our workshops for non-members of GOR or ÖGOR is subject to a slightly higher registration fee at the amount of an annual membership. Feel free to join either society.

Given the uncertainty of Covid, travel restrictions, and company policies, we strongly advise you to book your stay and travel accordingly. Cancellation of the on-site event may occur on short notice, and the organizers will waive the registration fee but will not refund any other cost.

Please, register no later than September 10 via https://www.redseat.de/pmo107-oegor

The latest information on the meeting is available on the homepage of GOR and of ÖGOR.

Yours sincerely,

Jens Schulz, Julia Kallrath, Josef Kallrath

Ulrich Pferschy

Bertram Wassermann

(GOR AG)

(ÖGOR)

(ÖBB)
Practice of Optimization in Transportation

Specific aims
In this workshop we want to exchange knowledge about Operations Research methods to deal with practical applications in transportation. We will explore the challenges and opportunities in optimizing transportation networks to improve efficiency, reduce costs, and minimize environmental impact. The speakers will present and discuss cutting-edge research and practical applications of mathematical optimization techniques specifically tailored for transportation systems. The sessions will cover topics such as optimization models for transportation planning, routing and scheduling in logistics, fleet management and vehicle routing algorithms, multi-modal transportation optimization, traffic flow modeling and control as well as hybrid approaches and applications of machine learning and artificial intelligence in transportation optimization.

We want to foster collaboration and knowledge sharing among industry experts, researchers, and academics. We provide a platform for networking and exchanging ideas with fellow professionals and industry practitioners. Practical, computational and theoretical contributions from academia and industry are welcome to be submitted.

About ÖBB
The ÖBB-Personenverkehr sub-group of the Austrian Federal Railways (OBB) achieved EBT of EUR 185 million in 2022 based on a total income of EUR 2,727 million. Every day the ÖBB-Personenverkehr operates
- 40 night connections,
- more than 400 long-distance connections during the day and
- around 4000 local transport services.

In 2022, around 41.8 million travelers were transported in long distance trains (27.1 millions in domestic long distance trains and around 14.7 million internationally in long distance trains). To properly yield-manage ÖBBs savings offers Sparschiene more than 1.3 million control activities are processed systemically and manually every day. A team of 3 Operations Research specialists supports the yield management group to handle these activities by means of reporting, programming, and forecasting. Their main project for 2023 is to automatically forecast utilization rates for day trains in Austria.

The core of this 1.5 day workshop (Thursday and Friday morning) will consist of an attractive schedule of talks covering a broad range of mathematical techniques and real world applications. As usual, we will reserve plenty of time for informal exchange and networking. In talks of 15+5min, 25+5min or 40+5min duration, experts from practice and research will address problems and solutions.

If you would like to contribute a talk, please contact any of the organizers.

Jens Schulz (schulz-gor ‘at’ gmx.net)
Julia Kallrath (julia.kallrath ‘at’ h-da.de)
ÖGOR - Jahrestagung 2023

Preliminary Program

The yearly Meeting of ÖGOR will take place in the afternoon of September 29, 2023. Confirmed invited speakers will be:

- Stefan Irnich (University of Mainz)
- Eranda Dragoti-Cela (Graz University of Technology)
- Elisabeth Zehendner (Österreichische Post AG)

Furthermore, there will presentations by the winners of the ÖGOR-Dissertation and Master-thesis prices sponsored by scc EDV-Beratung AG.

For further information please contact Ulrich Pferschy (ulrich.pferschy@uni-graz.at)

Venue & accommodation

Venue

The meeting is hosted by ÖBB and takes place at “Skylobby”
Lassallestraße 5
1020 Wien; Austria

How to get there?
The venue is in walking distance from train station Praterstern.

Conference dinner

The conference dinner will take place on Thursday, 28.9, in Salmbräu; Rennweg 8, 1030 Wien, Austria. Participation is included in the registration fee. Still, please, indicate during registration whether you like to participate at the dinner.

Accommodation

Vienna offers a variety of hotels, pensions and b&b’s. Please, arrange your stay yourself. Bear in mind that due to external circumstances, the organizers may decide to cancel the event, or switch to an online format. We cannot refund any cost incurred. Please, arrange your bookings accordingly.
A hotel near Praterstern (workshop location) or main station (excursion and dinner), or else close to public transport line U1 may be beneficial.
Joint meeting of ÖGOR and GOR working group PMO at ÖBB

Practice of Optimization in Transportation

Thursday, September 28, 2022: 09:00 – 18:00

09:00-09:30 Feel free to join, take a seat and have first chats

09:30-10:00 **Opening and Welcome** (Ulrich Pferschy & Jens Schulz)

10:00-10:30 Wassermann (ÖBB)
tba

10:30-11:00 ------------------------ Coffee Break ------------------------

11:00-11:30 **Speaker 1**
A preliminary schedule will be created in July
tba

11:30-12:00 **Speaker 2**
tba

12:00-13:00 ------------------------ Lunch Break ------------------------
Cafeteria

13:00-13:45 **Speaker 3**
A preliminary schedule will be created in July
tba

13:45-14:30 **Speaker 4**
tba

14:30-15:00 ------------------------ coffee break ------------------------
Taking a Group Photo for OR News, ÖGOR and Press

15:00-15:30 **Speaker 5**
tba

16:00-19:00 ------------------------ Excursion by ÖBB ------------------------

19:00-21:00 **Conference Dinner**
Friday, September 29, 2022: 09:00 – 13:00

07:30-09:00 ------------------ Breakfast at hotels -------------------------------
09:00-09:15 Welcome second day
09:15-10:00 Speaker 7 A preliminary schedule will be created in July tbd
10:00-10:30 Speaker 8 tbd
10:30-11:00 ------------------ coffee break -------------------------------
11:00-11:30 Speaker 9 A preliminary schedule will be created in July tbd
11:30-12:00 Speaker 10 tbd
12:00-13:00 ------------------ Lunch Break -------------------------------
13:00-13:15 Welcome to ÖGOR - Jahrestagung 2023 Ulrich Pferschy
13:15-14:00 Stefan Irnich (University of Mainz) New Models and Methods for Picker Routing and Order Batching
14:00-14:45 Eranda Dragoti-Cela (Graz University of Technology) A tour around optimization problems over permutations
14:45-15:15 ------------------ coffee break -------------------------------
15:15-16:00 Elisabeth Zehendner (Österreichische Post AG) How to forecast parcel quantities at node level in a distribution network
16:00-16:15 Presentation of scc EDV-Beratung AG, Sponsor of the 2023 ÖGOR-Prize
16:15-16:45 Presentations by the winners of the 2003 ÖGOR Prize
17:00- Conclusion with a light buffet

Location: Skylobby
Lassallestraße 5
1020 Wien; Austria
Abstracts

Tactical Planning of a Flexible Transit Service
Alexander Bosse (a), Dirk Mattfeld (a), Mike Hewitt (b), Maximilian Merkert (a)
(a) TU Braunschweig, (b) Loyola University Chicago

Public transportation often suffers from a lack of flexibility. A possible solution for this is the use of flexible transit services, which are a combination of fixed-route and demand-responsive transit systems. While the individual systems focus on either mid- to long-term (tactical) planning or short-term (operational) planning for routing, a combined system must address both of these planning levels. In this work, we address the tactical planning of such system in the context of public transport. For this purpose, we propose a two-stage stochastic programming model to determine a cost-efficient fleet size and service patterns for the synchronization of both systems that can later be used as a base for operational planning.

Tba
Ralf Borndörfer (Berlin)

A bi-objective locomotive scheduling problem using time-space network formulations
Kanchan Joshi & Jan Fabian Ehmke (Wien)

In this work, a crucial rolling stock planning problem, the locomotive scheduling problem is addressed. The locomotive scheduling problem aims to determine a sequence of trips and empty runs to be followed by each locomotive starting from and returning to the depot over the given planning horizon. A time-space network formulation provides information about the trip connections and the locomotive’s availability status that allows to determine assignment and sequencing of a locomotive. Using the cyclic circulation plan restriction, we model a mixed integer linear program for two objective functions, namely, minimize the number of locomotives and minimize empty-run kilometres. We investigate the results for both single objective functions and weighted bi-objective function. We also consider variants including buffers to hedge against delays. The results provide insights to decision makers and planners managing the capital-intensive rolling stock. Finally, the model is tested on real-world Austrian railway use cases to evaluate its performance for different objective functions.

Energy Consumption Prediction Models for Locomotives Used in Railway Freight Transportation
Fatih Kocatürk, Gisling Stefan, Ninja Soeffker, Jan Fabian Ehmke

In railway transportation, there is a high potential of energy saving by means of optimizing train schedules, circulation plans or locomotive assignments with the objective of minimizing energy consumption. There are several approaches regarding the modelling of train energy consumption, but the deterministic approach based on Davis equation is the most common method. In its basic form, the Davis equation calculates the total resistance force required to keep the train moving at a constant speed by considering the mass and velocity of the train, and journal, flange, air resistances acting on the train. In this study, data-driven energy consumption models are proposed for each locomotive type by utilising multiple linear/polynomial regressions and predicting the resistance coefficients of Davis equation. The input data is generated using two different sources: i) The real distance and gradient data for each single track in railway infrastructure is extracted from the RINF database (European Union Agency for Railways), ii) Time schedules of trains and energy consumption...
of locomotives are provided by the Austrian Federal Railways (ÖBB). The performance of each model is compared to the actual energy consumption of each locomotive type in terms of the coefficient of determination and mean squared error accuracy metrics. The Davis equations proposed in the literature with different resistance coefficient estimators are also compared to the proposed models. Finally, the provided energy consumption models are integrated into a real-world locomotive assignment optimization model.

Robustness proof for traction unit circulations and shift plans in an agent-based simulation model depicting the railway system in Austria
Jakob Rosenberger, Matthias Rößler

The potential in train systems to achieve savings in terms of energy, material, working hours and much more through optimized traction unit circulation plans and driver shifts is giant. There are various optimization approaches capable of delivering good plans for this purpose. A decisive aspect as to whether a circulation plan or a shift plan can also be reasonably used in the real world is the effect on the overall system in the train network, i.e., if specific traction unit assignments to train services are very likely to cause a consequence of massive delays, the corresponding circulation plan cannot be considered as robust. For this purpose, we developed an agent-based model to depict the railway system in Austria as well as a delay prediction model that was trained on historical delay data to stochastically introduce primary delays into the system. One of the goals of this work is to develop and calculate specific KPIs for the different aspects that are in the focus of the optimization objective for the generation of plans. Furthermore, circulation plans can be continuously improved in a feedback loop together with existing optimization models to achieve not only improvements in energy consumption and/or costs, but also in robustness.

Developing an OR-based software product to support network planners at Flixbus
Sander van Aken, Martin Knoll (Flixbus)

Robust Optimization for Vehicle Routing and Vehicle Scheduling with Uncertainty in the Number of Vehicles
Stefan Voß, University of Hamburg

ÖGOR - Jahrestagung 2023:

New Models and Methods for Picker Routing and Order Batching
Stefan Imich, University of Mainz

Warehouse activities include receiving, storing, picking, packing, and shipping operations. We address order picking, which is the process of retrieving inventory items from their storage locations in response to specific customer requests. More than 80 percent of all order-picking systems in Western Europe are manual (non-automated) low-level picker-to-parts picking systems, where pickers move through the warehouse in order to retrieve articles from the storage locations (picker-to-parts). In this context, the single picker routing problem (SPRP) is the basic routing problem and seeks for a minimum-length picker tour given the warehouse layout and the pick locations from where items must be collected. We show that the well-known dynamic-programming approach of Ratliff and Rosenthal can be extended and modified to model and solve NP-hard problems that have the SPRP as a subproblem. In particular, we consider warehouses with scattered storage and order batching problems as such hard optimization problems.
A tour around optimization problems over permutations
Eranda Dragoti-Çela, Graz University of Technology

Optimizing over permutations is a generic problem in combinatorial optimization. Some fundamental and prominent representatives are the linear or the quadratic assignment problem and the travelling salesman problem. From the point of view of the theoretical complexity most of these problems are challenging. In a tour along the borderline between hard and easy problems, we will point out to features of problems on both sides of the border and sketch some ideas on border-crossing heuristic solution approaches.

How to forecast parcel quantities at node level in a distribution network?
Elisabeth Zehendner, Österreichische Post AG

Logistics and postal service providers all around the world need to deliver never-seen-before amounts of parcels. Reliability comes from thorough network planning on all time horizons. For these planning activities, accurate forecasts and network planning tools are needed. We propose a three-stage forecasting framework for parcel distribution networks. It combines forecasting, routing rules, and simulation. Its output is the forecast of daily parcel quantities for all nodes in the distribution network. Another topic we address is how to measure and evaluate forecast quality at different aggregation levels. We demonstrate the applicability of our framework in a real-world environment.
CVs

Alexander Bosse studied Business Information Systems (Wirtschaftsinformatik) at the Technische Universität Braunschweig and graduated with a Master's degree in 2021. Since the end of 2021, he is a doctoral student and works as research assistant at the Decision Support Group of TU Braunschweig. His research is concerned with decision support using methods of operations research.

Kanchan Joshi received the Ph.D. degree from Indian Institute of Technology (IIT) Bombay, India, in 2014, with a focus on pre-emption and learning effects in resource constrained project scheduling. From 2014 to 2015, she was with Uhuru Corporation, Japan as a data scientist. She was a faculty member with National Institute of Industrial Engineering, India from 2015 to 2021, where she was involved in conducting consultancy as well as research assignments related to OR and teaching masters’ students. From 2021 to 2022, she was a postdoctoral research fellow with University of Exeter, UK, where she was involved in developing model for offshore wind farm installation and operations & maintenance logistics planning. She is currently a postdoctoral researcher with Business Analytics research group of University of Vienna. Her current research interests include reliable and integrated planning and scheduling of circulations and shifts.

ÖGOR - Jahrestagung 2023:

Stefan Irnic is a full professor in logistics management at the Gutenberg School of Management and Economics, Johannes Gutenberg University Mainz, Germany. His research interests include the development and application of optimization methods to solve problems in logistics and transportation, network design, and algorithmic graph theory. In particular, his research focuses on mathematical programming decomposition methods and also on modeling and solving rich vehicle-routing problems.

Eranda Dragoti-Çela is an associated professor at the Department of Discrete Mathematics at the TU Graz. She holds a Master Degree form the University of Tirana and a PhD from the Graz University of Technology. Her main research interests lie in the area of combinatorial optimization and optimization problems in graphs. In particular, she works on the identification and characterization of combinatorial properties which give rise to tractable special cases of NP-hard problems. Other research topics include mathematical models in portfolio optimization and models of optimization uncer uncertainty.

Elisabeth Zehendner works at the Österreichische Post AG where she currently tackles questions about forecasting and network optimization at the tactical and strategic level. The objective of her team is to provide tools and data to support operational units with their planning activities and to evaluate scenarios for network design. During her prior job-experience in academia and consulting in Germany, France, and Austria, she acquired knowledge in logistics, computer science, combinatorial optimization, and project management.