Ziena Optimization, Inc.

Experts in nonlinear optimization

www.ziena.com

Ziena Background

- Incorporated: June 2001
- Founders: 3 professors + 1 recent Ph.D.
- Product: KNITRO
 - Software to solve nonlinear optimization problems
 - Developed by professors/students at Northwestern University
 - Owned by Northwestern University
 - Exclusive and perpetual license agreement between NU and Ziena signed in February 2002

What is optimization?

Apply mathematical/analytic techniques to uncover the "best" solution to difficult problems involving many decision variables and constraints

Two-stage process:

Model the problem mathematically (AMPL, GAMS, . . .)

Solve the mathematical problem (KNITRO, MINOS, SNOPT, CONOPT, . . .)

Linear vs. Nonlinear

- Linear
 - Planning & scheduling problems
 - Routing & transportation problems
 - Easier more established
 - ILOG (CPLEX), Dash Optimization (Xpress)
- Nonlinear
 - Many engineering problems
 - Much more difficult less established
 - Ziena (KNITRO), etc.

Optimization software market

- Annual revenue from sales/services approaching \$200 million and growing
- Bulk of the market for linear
- We specialize in nonlinear
 - Much more difficult & complex
 - No dominant developer or vendor
 - Market smaller, less defined

Nonlinear applications

- Network design and operations
- Dynamic pricing
- Revenue management
- Mechanical engineering
- Chemical engineering
- Circuit design
- Finance/portfolio management
- Shape optimization
- Trajectory optimization

European customers (corporate)

- Air Liquide
- Bouygues Telecom
- Busarello+Cott+Partner, Inc.
 (Swiss power systems engineering company)
- Gas du Sud (French gas company)
- Michelin
- SIAAP (French water utility)
- Tractebel S.A (Belgian energy company)
- Distributed in Europe by Artelys, S.A. (Paris)

European customers (academic)

- CERT-ONERA, Control System Department (France)
- École des Mines de Paris
- ENSEEIHT (Toulouse, France)
- Fraunhofer Institute (Germany)
- Université Paul Sabatier, Faculté de Médécine Purpan (France)
- University of Coimbra, Department of Mathematics (Portugal)

Other large customers include . . .

- ExxonMobil
- Citigroup

Business plan — funding

- Phase I (2001-2003)
 - Founders put in some capital
 - Preliminary software sales
 - Phase I SBIR grant obtained Jan 2003
- Phase II (2004-2006)
 - Continued sales/business partnerships
 - Phase II SBIR grant obtained June 2004
- Phase III (2006-)
 - Self-sufficient from revenues

Business plan — revenues

- KNITRO Software
 - Direct Sales
 - Maintenance contracts
 - Distributors
 - Mathematical software vendors
 - Value Added Resellers
- Consulting
- Sales of modeling software
 - AMPL

Business partnerships

- Artelys S.A. (European distributor)
- Frontline Systems (Excel "solver")
- Tomlab (MATLAB interface)
- AMPL Optimization, LLC
- GAMS Development Corporation
- VAR Agreements:
 - Tractebel S.A.
 - Busarello+Cott+Partner, Inc.

Long-term goals

- Run a successful/profitable small-medium size business or ...
- Expand and grow and compete on a large scale or ...
- Sell to one of the big linear optimization companies

KNITRO

A software package for optimization

KNĪTRO

- A package for continuous optimization
- State-of-the-art optimization techniques developed over the last 10 years at Northwestern University

■ ETR 1992

■ NITRO mid 1990s

KNITRO 1.0 2000-2001

KNITRO 2.0 January 2002

KNITRO 3.0 April 2003

KNITRO 4.0 October 2004

KNITRO Strengths

- Robust
- Efficient
- Flexible
- Large-scale
- Especially good for nonlinear constraints
- Supported by theory
- Commercially supported

Problem types

- Unconstrained
- Bound constrained
- Equality constrained
- Nonlinear equations
- Least squares
- Linear and quadratic programs
- General nonlinear problems (large)

Problem form

KNITRO solves problems that can be written as

Minimize
$$f(x)$$

Subject to $h(x) = 0$
 $g(x) \ge 0$

- x must be continuous
- f, h and g must be smooth
- No convexity requirement

Algorithms

- Interior-point / barrier
 - KNITRO/InteriorCG (handles large/dense Hessians)
 - KNITRO/InteriorDirect (handles ill-conditioned problems)
- Active-set SLQP (new October 2004!)
 - KNITRO/Active (good for warm starts)
- Trust-region approach
- Supported by global convergence theory

Interior algorithms: Example 1

- CVXQP2
 - = n=10,000, m=2,500 + bounds
 - nnzH = 40,000
 - 99.6% of time spent factoring in Direct

Code	iters	time	time/iter
InteriorCG	11	401	36.5
InteriorDirect	14	2638	188.4

Interior algorithms: Example 2

- BQPGAUSS
 - \blacksquare n = 2003, bound-constrained
 - Hessian not expensive but ill-conditioned

Code	iters	time	time/iter
InteriorCG	27	1310	48.5
InteriorDirect	19	3	0.16

New algorithm

- Active-set SLQP
 - Alternates linear programs and equality-constrained quadratic programs
 - Built on top of simplex solver
- Advantages
 - Crossover techniques
 - Better active-set information
 - Warm starts

KNITRO interfaces

- C/C++/Fortran
 - Easily integrated within existing applications via callable library
- AMPL
 - Flexible and powerful syntax
 - Derivatives computed automatically
 - Focus on modeling and analysis of results
 - Ideal for prototyping
- MATLAB (through Tomlab)
- GAMS (available soon)

First derivative options

- User or modeling language provides exact derivatives
- KNITRO computes finite difference derivatives (forward or centered)
- Derivatives can be checked using finite differencing

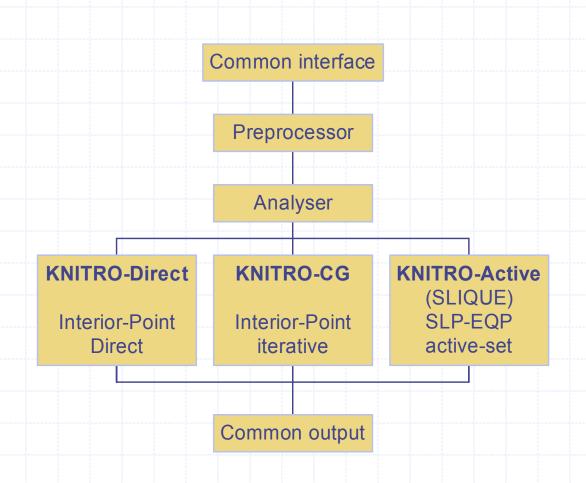
Second derivative options

- User or modeling language provides exact derivatives
- User or modeling language provides exact Hessian-vector products (KNITRO/InteriorCG, KNITRO/Active)
- KNITRO computes Hessian-vector products via finite differencing (KNITRO/InteriorCG, KNITRO/Active)
- Dense quasi-Newton (BFGS or SR1)
- Limited-memory BFGS

Feasible Option

- By default constraints may be violated during the optimization process
- Feasible option enforces feasibility with respect to inequalities given initial point satisfying inequalities
- Constraints may be undefined outside feasible region
- Allows early termination with feasible solution

Solver Options comparison


	KNITRO	MINOS	SNOPT	LOQO	IPOPT	GRG
Large-scale	Х	X smrsp	X smrsp	Х	X	
(100,000)						
iterative	X		?			
direct	X	X	x	X	X	X
Exact Hessian	X			X	X	?
Quasi-Newton	X	X	X		?	X
Hessian-vector	X					
Feasible	X					?
Interior	X			X	X	
Active-set	X	X	x			X
Commercially supported	X					?

Future Developments

- Add marketing / project management staff position
- Mixed-integer nonlinear optimization

KNITRO future developments

