

Ressourcenaufwands-Bewertung optimierter Energiesystemszenarien am Beispiel einer ländlichen Gemeinde

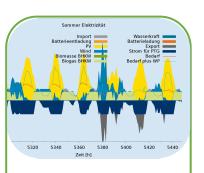
Workshop Operations Research im Umweltschutz 17.05.2019, Karlsruhe

Heidi Hottenroth, Dr. Hendrik Lambrecht, HS Pforzheim Annette Steingrube, Fraunhofer ISE

Einleitung

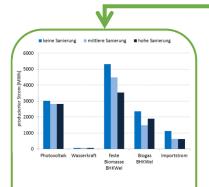
- Im Fokus: erneuerbare Energiesysteme (EES)
- im Vergleich zu fossil basierten Energiesystemen:
 Verlagerung Umweltwirkungen von der Betriebs- in die Herstellungsphase
 → Reduktion von CO₂ führt zu Verlagerung auf andere Wirkungen
- Verlagerung für verschiedene Energiesystemszenarien quantifizieren
- Ziel: Entscheidungsunterstützung bei Gestaltung eines kosten- und ressourceneffizienten zukünftigen Energiesystems
- Hier: Fallstudie einer ländlich geprägten Gemeinde im Nordosten von BW

Vorgehensweise



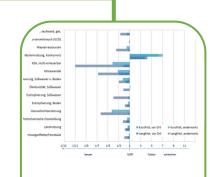
Eingangsdaten

- Potentiale für erneuerbare Energien
- Lastprofile
 Strom/Wärme
 (stündlich aufgelöst)
- Kosten

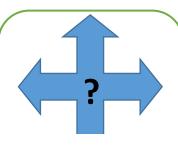

17.05.2019

 Import-/Exportbeschränkungen

Energiesystemoptimierung mit KomMod


- geringste Kosten in Struktur und Betrieb

Verschiedene Szenarien


Variation von:

- Potentialen
- Bedarfen
- Kosten

Bewertung Ressourcenaufwand

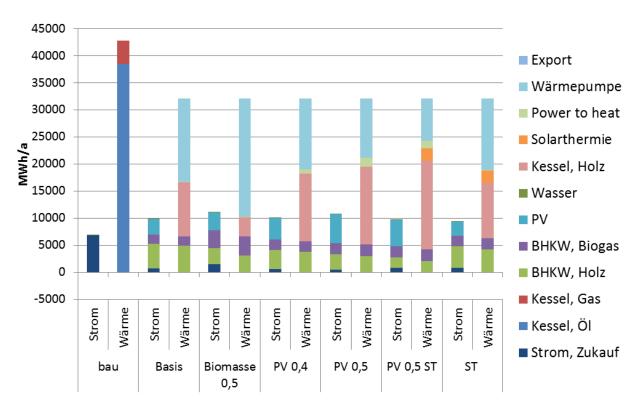
- Sachbilanzdaten für gesamten Lebenszyklus pro Technologie

Ziel: Entscheidungsunterstützung für zukünftiges Energiesystem Kriterien:

- Kosten
- Ressourcenaufwand

Energiesystemmodell KomMod

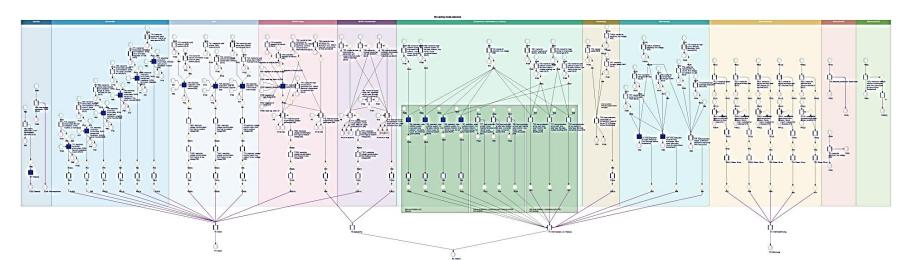
- Erstellt am Fraunhofer ISE
- Techno-ökonomisches Buttom-up-Energiesystemmodell ohne Pfadoptimierung
- Lineares Optimierungsproblem
- Modellierungsumgebung und –sprache AMPL


Referenz: J.-B. Eggers (2018): Das kommunale Energiesystemmodell KomMod - Konzeption, Implementierung und Anwendung an den Praxisbeispielen Frankfurt am Main und Freiburg-Haslach. Fraunhofer Verlag, Stuttgart

Szenarienentwicklung und -Berechnung – erster Satz

Szenario	Restriktionen	
	Basisannahmen entsprechend der	
	angenommenen Potenziale,	
Basis	Mindestleistung PV: 3,1 MW (Ist-Stand)	
Biomasse 0,5	Basis + Potenzial für Biomasse halbiert	
PV 0,4	Basis + mind. 40 % des Strombedarfs mit PV	
PV 0,5	Basis + mind. 50 % des Strombedarfs mit PV	
	Annahmen von PV 0,4 + Zwang zu	
PV 0,4 ST	Solarthermie-Nutzung	
ST	Basis + Zwang zu Solarthermie-Nutzung	

Annahme für alle: energetische Sanierung Wohngebäude (1/3 hoher Standard, 1/3 mittlerer Standard)

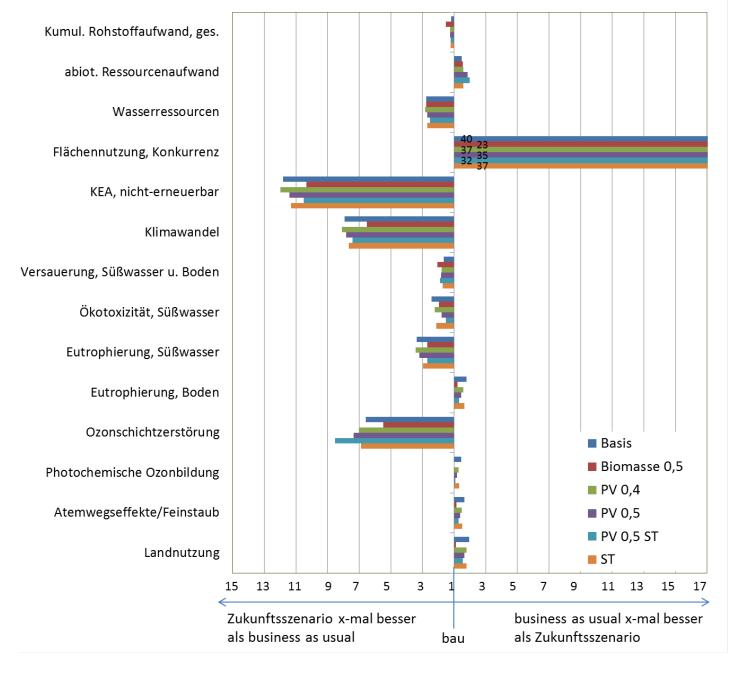


PV=Photovoltaik, ST=Solarthermie, bau=business as usual

Bewertung Ressourcenaufwand (RA)

- Bewertung in Anlehnung an VDI-Richtlinie 4800, Blatt 2
 - → Lebenszyklusansatz
 - → 14 Indikatoren
- Parametrisiertes Energie- und Stoffstrommodell in Umberto LCA+ aus ecoinvent-Datensätzen aufgebaut
- Speisung mit Parametern und Energiemengen der optimierten Szenarien

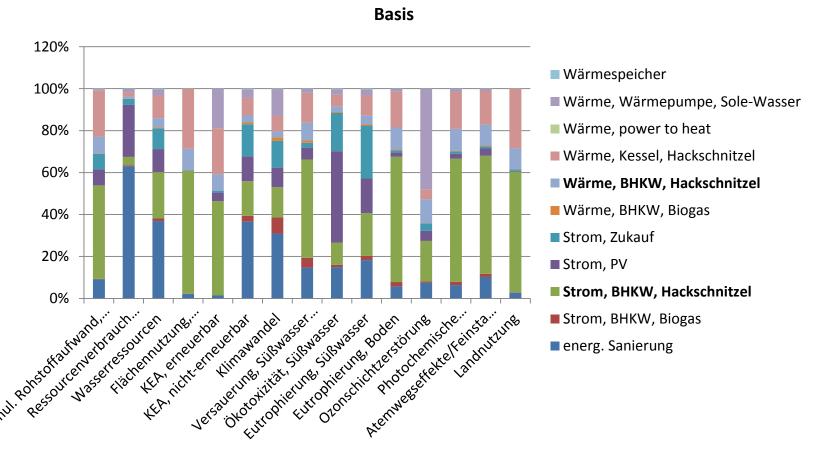
Untersuchungsrahmen Ressourcenaufwand


- Vergleichseinheit für Szenariovergleich: Strom- u. Wärmebedarf für ein Jahr
- Strom-Zukauf: zukünftiger Strommix 2035¹
- Biogas nur aus Reststoffen; geschlossene Nachrotte
- Vergleich zu "Business as usual"-Szenario (Strom: 100 % Zukauf, Wärme: viel Öl-, etwas Gas-Kessel)

¹ Szenario "Mit weiteren Maßnahmen" nach Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit, Projektionsbericht 2015 - gemäß Verordnung 525/2013/EU. März 2015, Berlin, 2015.

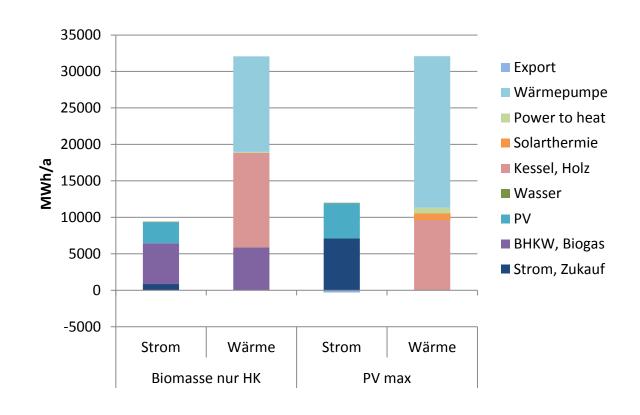
Ergebnisse Ressourcenaufwandsbewertung

- Darstellung: Verbesserung/Verschlechterung im Vergleich zum business as usual (bau)
- Szenario Biomasse 0,5 zeigt geringere Verschlechterungen, aber auch geringere Verbesserungen
- Mehr PV tendenziell gut
- Solarthermie tendenziell gut



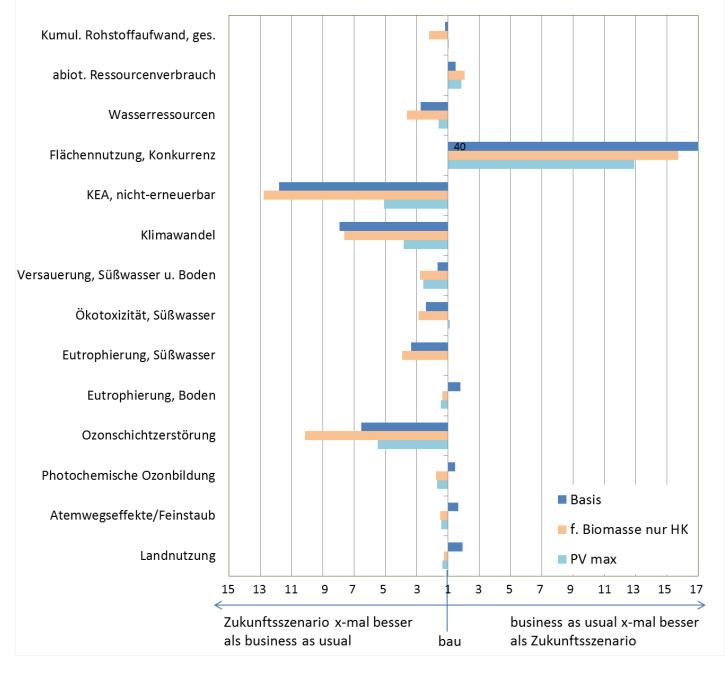
Analyse der Beiträge im Basis-Szenario

Hackschnitzel-BHKW


- verursacht in vielen Kategorien die höchsten Wirkungen,
- obwohl Anteil an Erzeugung nicht am höchsten

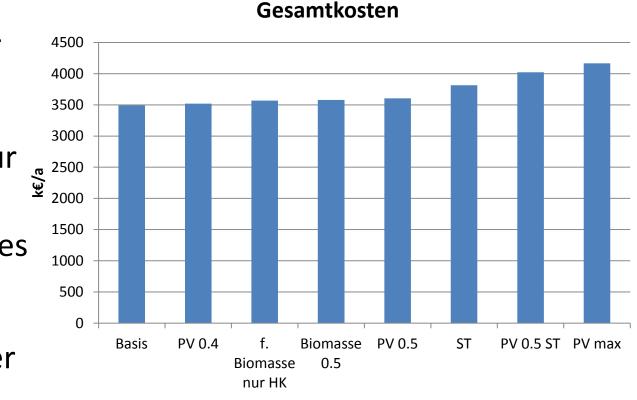
Szenarienentwicklung und -Berechnung – zweiter Satz

- Szenario feste Biomasse nur Heizkessel: Verzicht auf Holz-BHKW, Holz nur für Heizkessel
- Szenario PV max: Verzicht auf alle BHKW, so dass PV-Nutzung zur Stromerzeugung so weit erhöht wird, bis teurer als Zukauf; Solarthermie wird erzwungen



PV=Photovoltaik, f. Biomasse nur HK= feste Biomasse nur Heizkessel, bau=business as usual

Ergebnisse Ressourcenaufwandsbewertung


 Verschlechterungen bei Ressourcenaufwänden können durch veränderte Restriktionen weiter reduziert werden

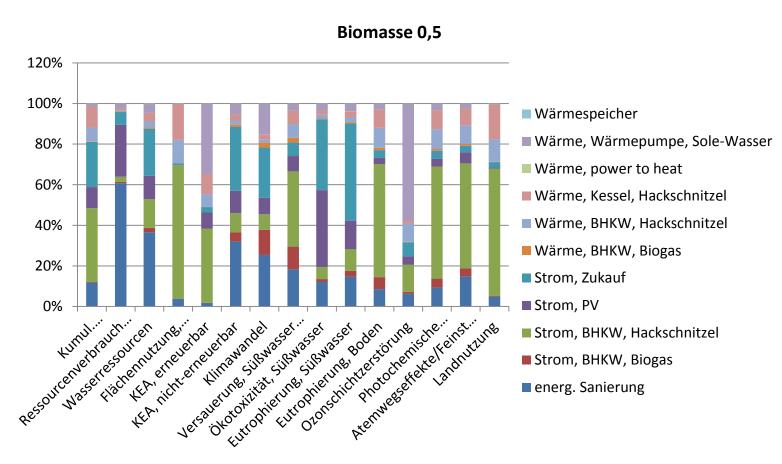
Kosten

- Szenario mit größter Treibhausgasreduktion (PV 0,4) verursacht nur minimal höhere Kosten als kostenoptimales Szenario (Differenz der Treibhausgasemissionen auch nur gering)
- Vergleichsweise ressourcen-effizientes Szenario (feste Biomasse nur Heizkessel) verursacht 3 % höhere Kosten; PV max allerdings 19 % höher

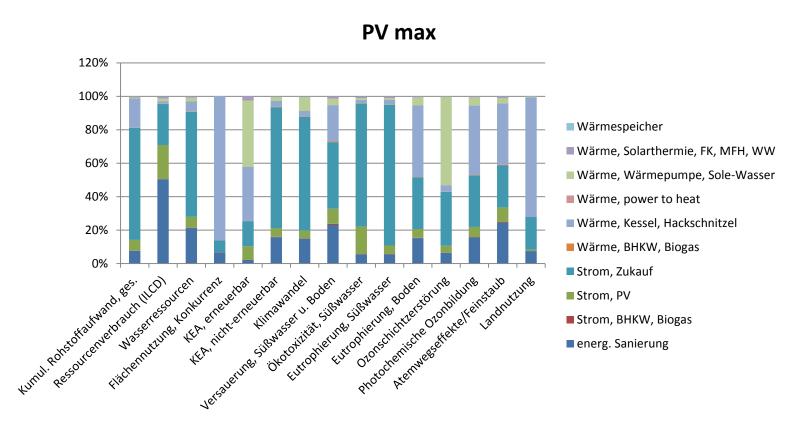
Zusammenfassung und Fazit

- Deutliche Verlagerung von Umweltwirkung nur im Bereich Flächeninanspruchnahme
- Teilweise deutliche Verbesserungen
- Reduktion von Holznutzung verringert Nachteile
- Empfehlung für kosten- und ressourcengünstiges EES möglich

- Ressourceneffizientestes Szenario bleibt durch sequentielle Anwendung von Optimierung und RA-Bewertung unbekannt
- Engere Verknüpfung wünschenswert, aber nicht zulasten der Transparenz



Vielen Dank für Ihre Aufmerksamkeit


Kontakt: heidi.hottenroth@hs-pforzheim.de

besuchen Sie die **ENsource** Webseite www.ensource.de

Vergleich Strommixe

Nettostromerzeugung	Ecoinvent (2012)	Anteil in 2035
Kernenergie	14,4%	0,0%
Braunkohle	23,1%	11,3%
Steinkohle	16,7%	9,8%
Erdgas	10,9%	13,4%
Öl	1,1%	0,0%
Gichtgas	1,2%	1,1%
Kokereigas	0,3%	0,4%
Müll	1,8%	0,9%
Sonstige	0,0%	0,2%
Erneuerbare		
Wasser	3,2%	4,5%
Wind onshore	7,5%	31,7%
Wind offshore	0,2%	10,2%
PV	5,6%	10,9%
Biogas	4,3%	1,1%
Biomasse	1,9%	2,6%
Geothermie	0,0%	1,1%
Pumpspeicher	1,0%	0,7%
Importe	6,7%	
	100%	100%