

Über die Dimensionierung von Energiebereitstellungssystemen in produzierenden Unternehmen

(On the dimensioning of energy conversion systems for manufacturing companies)

Corresponding author: Chantal Ganschinietz

(chantal.ganschinietz@wiwi.uni-augsburg.de)

University of Augsburg

- 1. Motivation
- 2. Decision problem with special aspects
- 3. Planning approach and implementation
- 4. Results
- 5. Further research
- 6. References

PS: Operational scheduling

Cum. AES demand

→ Load duration curves (LDC) represent the (historical) AES demand

A CS consists of one or more conversion units (CU) with individual characteristics:

- Minimal, nominal and maximal load (*MinL*, *NomL*, *MaxL*)
- Load efficiencies (η_{MinL} , η_{NomL} , η_{MaxL})

Decision problem with special aspects **2.3 Basic types of CUs**

Large conversion unit (LCU)

- Fulfills basic AESD with max. efficiency
 → high NomL efficiency, small control range
- Based on *NomL MaxL* and *MinL* are derived and thus, the dimensions the CU

Flexible conversion unit (FCU)

- Handles AESD peaks

 → smaller NomL efficiency than LCU but a wider control range
- The *NomL* of FCUs is configured within a given range based on its *MaxL* and *MinL*

Chantal Ganschinietz

Chair of Production & Supply Chain Management, University of Augsburg

3. Planning approach and implementation

- 3.1 Decision environment
- 3.2 Simulative scheduling (2b) LDC generation
- 3.3 CS planning (3) solution methods

> Planning approach and implementation

3.1 Decision environment

(based on " Distributed decision making—a unified approach" by Schneeweiss 2003)

Simulative Scheduling is used to anticipate LDCs if no historical data is available or new scheduling objectives are in mind

- > Planning approach and implementation 3.2 Simulative scheduling (2b) - LDC generation
- Simulative Scheduling (2b) to anticipate LDCs
 - 240 schedules per year with ~480 minutes/day (For feasibility the planning horizon T is $T = \max\{480, Makespan^{LPT}\}\}$
 - Different production environments
 - Different energy demand characteristics
 - Scheduling with three different objectives

- Company size m (S/M)
- Product complexity p (MS / FC)
- Number of jobs n

Size	Р		m	n
S	MS 30		3	[44, 48]
			4	[58, 64]
	FC	80	3	[14, 18]
			4	[18, 24]
Μ	MS	30	10	[145, 160]
			12	[174, 192]
	FC 80		10	[45, 60]
			12	[54, 72]

4 production environments

→ 4 production environments combined with 8 energy settings map 32 company types
→ The 3 objectives lead to 96 anticipated LDC (3 per company type)

- TEH two-step truncated enumeration heuristic
 - First step: enumerate *NomL^{LCU}* by relatively fixed *NomL^{FCU}*
 - Second Step: Enumerate NomL^{FCU} with fixed NomL^{LCU}
- MINLP mixed integer nonlinear program
 - Objective function: Minimize total FESD

$$Min \sum_{L=l}^{L} \left(\frac{cAESD_{l}^{LCU}}{\mu_{l}^{LCU}} + X_{l} * \frac{cAESD_{l}^{FCU}}{\mu_{l}^{FCU}} \right) * nop_{l} \qquad \text{with} \qquad \begin{array}{c} nop_{l} \\ X_{l} \\ = 0 \text{ if FCU is needed and} \\ = 0 \text{ if FCU is not needed to cover the } AESD_{l} \end{array} \right)$$

Determination of the part load efficiencies is not linear

$$\begin{split} \mu_{l}^{LCU} &\leq Y_{l}^{LCU} & * \left(\frac{\mu_{MaxL}^{LCU} - \mu_{NomL}^{LCU}}{\left(MaxL^{LCU} - NomL^{LCU} \right)^{2}} \right) * \left(cAESD_{l}^{LCU} - NomL^{LCU} \right)^{2} + \mu_{NomL}^{LCU} \\ &+ \left(1 - Y_{l}^{LCU} \right) & * \left(\frac{\mu_{MinL}^{LCU} - \mu_{NomL}^{LCU}}{\left(MinL^{LCU} - NomL^{LCU} \right)^{2}} \right) * \left(cAESD_{l}^{LCU} - NomL^{LCU} \right)^{2} + \mu_{NomL}^{LCU}) \end{split}$$

Chantal Ganschinietz Chair of Production & Supply Chain Management, University of Augsburg

4. Results

4.1 LCU and FCU parameter-setting analysis

4.2 Overall results

PSCM	PRODUCTION & SUPPLY CHAIN MANAGEMENT

	LCU-0	LCU-1	LCU-2	LCU-3	LCU-4	LCU-5
η^{LCU}_{MaxL}	87 %	87 %	85%	85%	80%	91%
η_{NomL}^{LCU}	95 %	95 %	95 %	93%	97%	93%
η^{LCU}_{MinL}	82 %	82 %	80%	80%	75%	86%
$\Delta^{LCU}_{NomL,MaxL}$	0.05	0.10	0.10	0.10	0.05	0.05
$\Delta_{NomL,MinL}^{LCU}$	0.30	0.40	0.40	0.40	0.30	0.30

Large conversion unit (LCU)

- one LCU as basis of comparison (LCU-0)
- increased operational range (LCU-1)
- increased operational range & modified efficiencies (LCU-2, LCU-3)
- modified efficiencies (LCU-4, LCU-5)
- \rightarrow 6 divers LCUs

	FCU-0	FCU-1	FCU-2	FCU-3	FCU-4
η^{FCU}_{MaxL}	65%	65%	65%	60%	70%
η^{FCU}_{NomL}	8 4%	84%	82%	86 %	82%
η^{FCU}_{MinL}	60%	60%	60%	55%	65%
$\Delta^{FCU}_{MaxL, NomL}$	0,15	0,05	0,05	0,15	0,15
$\Delta^{FCU}_{MaxL,MinL}$	0,30	0,10	0,10	0,30	0,30

Flexible conversion unit (FCU)

- one FCU as basis of comparison (FCU-0)
- looser bounds of *NomL* (FCU-1)
- looser bounds of NomL & adjusted NomL efficiency (FCU-2)
- modified efficiencies (FCU-3, FCU-4)
- → 5 divers FCUs

- FCU parameters analysis
 - FCU-3 is most preferable for almost all company types (28 of 32) (FCU-3: increased NomL efficiency, but suffers in part-load efficiency)
 - FCU-1 (3 of 32) and FCU-4 (1 of 32) are more suitable for specific company types

(FCU-1: looser bounds for the NomL)

(FCU-4: increased part-load efficiency, but suffers in NomL efficiency)

- LCU parameters analysis
 - LCU-5 is not preferable due to its lower nominal load efficiency (0 of 32) (LCU-5: increased part-load efficiency, but suffers in NomL efficiency)
 - although LCU-4 has the highest nominal load efficiency (11 of 32), LCU-1 with its larger operational range is preferable for most company types (21 of 32)
- \rightarrow nominal load efficiency of a CU is not the only decisive parameter

 \rightarrow A CUs operational range is important

	FCU-0	FCU-1	FCU-2	FCU-3	FCU-4
η_{MaxL}^{FCU}	65%	65%	65%	60%	70%
η^{FCU}_{NomL}	84%	84%	82%	86%	82%
η_{MinL}^{FCU}	60%	60%	60%	55%	65%
$\Delta^{FCU}_{MaxL, NomL}$	0,15	0,05	0,05	0,15	0,15
$\Delta^{FCU}_{MaxL,MinL}$	0,30	0,10	0,10	0,30	0,30

	LCU-0	LCU-1	LCU-2	LCU-3	LCU-4	LCU-5
η^{LCU}_{MaxL}	87%	87%	85%	85%	80%	91%
η_{NomL}^{LCU}	95%	95%	9 5%	93%	97%	93%
η^{LCU}_{MinL}	82%	82%	80%	80%	75%	86%
$\Delta^{LCU}_{NomL,MaxL}$	0.05	0.10	0.10	0.10	0.05	0.05
$\Delta^{LCU}_{NomL,,MinL}$	0.30	0.40	0.40	0.40	0.30	0.30

- List of Most preferable parameters by company type
 - → depending on a manufacturing company's characteristics, individual combinations of a scheduling objective and CU parameters are most suitable to maximize its energy efficiency
- LCU parameters have a greater influence than FCU parameters
- ANTIGONE (MINLP) & TEH solve with reasonably good solution quality
- SQM has the best mean and the most stable positive influence on energy efficiency
 Testing of more energy-related scheduling objectives advisable

5. Further research

- 5.1 CU state and load transitions
- 5.2 Modeling of additional energy requirements

- CU can be in states
 - "operating", "off-cold", "cold-startup", "off-warm", "warm-startup", "on"
 - Predefined sequences of CU states
 - Sate- and/or time-dependent transitions
 - Minimum CU state durations
- While CU is in the "operating" state it delivers various AESDs (part loads)
 - Arbitrarily large load transitions within short time are not possible (Restricted ramp-ups/ rampdowns)
 - Minimum CU part-load durations
- ➔both cause additional energy requirements

How to model additional energy requirements?

- direct consideration within the optimization model
 - level aggregation no longer possible
 - number of variables increases dramatically
- Indirect consideration by adapting the AESD to enforce a corresponding FESD
 - Minimum durations of CU states and part-loads can be considered by aggregation Cum. AES demand
 - \rightarrow how many time periods have to be aggregated to a constant AESD-level?
 - \rightarrow How should the level be chosen? Max. vs Mean

How to model additional energy requirements?

- Indirect consideration by adapting the AESD to enforce a corresponding FESD
 - Additional FESDs (e.g., for ramp-ups) have to be approximated
 - Possible height difference of load transition depends on available time for the transition
 - →What difference of AESD is manageable between aggregated time intervals?

6. References

- Beihong, Zhang; Weiding, Long (2006): An optimal sizing method for cogeneration plants. In: *Energy and Buildings* 38 (3), S. 189-195. DOI: 10.1016/j.enbuild.2005.05.009.
- Cho, Woojin; Lee, Kwan-Soo (2014): A simple sizing method for combined heat and power units. In: *Energy* 65, S. 123-133. DOI: 10.1016/j.energy.2013.11.085.
- Erdinc, O.; Uzunoglu, M. (2012): Optimum design of hybrid renewable energy systems: Overview of different approaches. In: *Renewable and Sustainable Energy Reviews* 16 (3), S. 1412-1425. DOI: 10.1016/j.rser.2011.11.011.
- Eurostat (2012): Europe in figures. Eurostat yearbook 2012. Luxembourg: Publications Office of the European Union, zuletzt geprüft am 19.11.2014.
- Gahm, Christian; Denz, Florian; Dirr, Martin; Tuma, Axel (2016): Energy-efficient scheduling in manufacturing companies: a review and research framework. In: Eur J Oper Res 248 (3), S. 744-757. DOI: 10.1016/j.ejor.2015.07.017.
- Haapala, Karl R.; Zhao, Fu; Camelio, Jaime; Sutherland, John W.; Skerlos, Steven J.; Dornfeld, David A. et al. (2013): A Review of Engineering Research in Sustainable Manufacturing. In: J. Manuf. Sci. Eng. 135 (4), S. 41013. DOI: 10.1115/1.4024040.
- Jovane, F.; Yoshikawa, H.; Alting, L.; Boër, C. R.; Westkamper, E.; Williams, D. et al. (2008): The incoming global technological and industrial revolution towards competitive sustainable manufacturing. In: CIRP Annals Manufacturing Technology 57 (2), S. 641-659. DOI: 10.1016/j.cirp.2008.09.010.
- Wang, Jiang-Jiang; Jing, You-Yin; Zhang, Chun-Fa (2010): Optimization of capacity and operation for CCHP system by genetic algorithm. In: *Appl Energ* 87 (4), S. 1325-1335. DOI: 10.1016/j.apenergy.2009.08.005.
- Schneeweiss, Christoph (2003): Distributed decision making--a unified approach. In: Eur J Oper Res 150 (2), S. 237-252. DOI: 10.1016/S0377-2217(02)00501-5.
- Yokoyama, Ryohei; Shinano, Yuji; Taniguchi, Syusuke; Ohkura, Masashi; Wakui, Tetsuya (2015): Optimization of energy supply systems by MILP branch and bound method in consideration of hierarchical relationship between design and operation. In: *Energy Conversion and Management* 92, S. 92-104. DOI: 10.1016/j.enconman.2014.12.020.