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Generative Adversarial Networks for Imbalanced Learning in Customer Scoring

n Customer Scoring
n Classification of Imbalanced Data
n Generative Adversarial Neural Networks (GAN)
n GANs for Synthetic Data Generation

Agenda
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Customer Scoring

Payment Risk Churn Management Product returns
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Mail Targeting Couponing



Classification of Imbalanced Data

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12

La
st

 o
rd

er
 v

al
ue

 [€
]

No. of orders in last year

Churn
Time 
Since 
Order

No. of 
orders

Last 
Order 
Value

0 5 4 25
0 1 2 15
0 4 2 30
0 10 1 51
0 7 4 20
0 6 3 49
0 3 1 15
1 2 3 65
1 1 5 53
1 3 2 57
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Classification of Imbalanced Data

12.04.19 GOR AR Analytics - GAN for Imbalanced Learning in Customer Scoring 5

1 2 3 4 5 10 20 50

Pr
ed

ict
io

n 
Pe

rfo
rm

an
ce

 (A
UC

)

Imbalance Ratio (Stay / Churn)



Synthetic Oversampling
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Generative Adversarial Networks

https://blog.insightdatascience.com/generating-custom-photo-realistic-faces-using-ai-
d170b1b59255
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Generative Adversarial Networks
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Generative Adversarial Networks
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Generative Adversarial Networks
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Conditional GAN
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Empirical Evaluation

Objective Industry Source Obs. Numeric
Var.

Categorical 
Var. (Levels) P(+1) Minority

Cases
Profitability E-Commerce DMC05 50,000 5 27 (651) 0.06 3000

Response E-Commerce DMC10 32,428 20 18 (209) 0.19 6161

Response Finance UCI-Coil00 9,822 59 26 (128) 0.06 589

Within 5-fold CV evaluation:
5-fold CV for Sampler + Model tuning
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Empirical Evaluation
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Empirical Evaluation

12.04.19 GOR AR Analytics - GAN for Imbalanced Learning in Customer Scoring 15

M
od

el
 p

er
fo

rm
an

ce
(A

UC
)

0,5

0,55

0,6

0,65

0,7

0,75

0,8

COIL00 DMC05 DMC10

cWGAN unbalanced



n Generative Adversarial Networks (GAN) are powerful 
tools to generate synthetic data

n GANs are applicable to business data
n GANs show potential to improve existing scoring

models

Takeaways
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Also use GANs to

n Correct biased experiment samples

n Reduce bias in automatic decision making

n Create anonymized artificial data to share

n Multiply data that is costly to acquire

n Detect outliers and fraud

Use Cases
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Thank You For Your Attention

Prof. Dr. Stefan Lessmann
Johannes Haupt
Chair of Information Systems

School of Business and Economics
Humboldt-University of  Berlin
Unter den Linden 6
D-10099 Berlin, Germany

Tel. +49.30.2093.5742
Fax. +49.30.2093.5741

stefan.lessmann@hu-berlin.de
http://bit.ly/hu-wi
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