Munich, May 5, 2006

Integrated Planning of Petrochemical Networks

Markus Leopoldseder Christian Gilow

McKinsey's Supply Chain Management Practice is active in a wide range of sectors

Today's topic

Packaged goods

Fashion

Retail

High Tech

Computer and telecom

Consumer electronics

Aerospace and defense

Automotive & Assembly

OEMs

Automotive suppliers

White goods

Pharma & Health

Pharma

Medical devices

Hospitals

Process

Metals

Paper

Petroleum and chemicals

Focus on top management-relevant supply chain management issues

The petroleum value chain

The petroleum value chain is a rewarding area for supply chain optimization

Sources of value

- Facilities costing up to USD 2.5 billion to be optimally utilized
- Variability of feedstock grades, availability and prices
- Variability of product demand and prices
- Logistics may account for up to 50% of product cost

Petroleum value chain

Organizational potentials

Huge complexity historically led to fragmented organization and optimization

Integrated optimization is a major value lever for petroleum supply chains

McKinsey optimization applications in the petroleum value chain

CLIENT EXAMPLES

Example 1 – integrated petrochemical supply chain optimization

Scope of integrated supply chain planning case

Focus of case

Optimize footprint

- Make-or-buy decisions (what to build)
- Major investment decisions (e.g., where to build)

Optimize flows

- Decisions on production alternatives (what to produce, which unit or process to use)
- Market decisions (sell or convert, to whom to sell, from whom to buy)

Optimize processes

- Process fine-tuning (e.g., optimize electricity and catalyst use)
- Minor investments (e.g., install new compressor)

The Financial Planning Department (FDP) acted as arbiter between BUs

Planning process

- 1 BUs make a very detailed plan of what to buy, produce, and sell. These plans are optimized manually according to current transfer prices and processing fees
- 2 FPD sets transfer prices and processing fees once a year
- 3 FPD puts together unified production and sales plan by ironing out conflicts between business units (according to "self-cost list")
- 4 BUs execute unified feedstock, production and sales plans

Integrated planning vs. reorganization into profit centers

Situation

- Monopolist position in many products and intermediates
- Lack of a real liquid market for many intermediates

Complication

 BU profit centers cut along large blocks of the value chain not effective, since transfer prices are unrealistic in the absence of usable market prices

Solution 1: Integrated planning

"Real" optimum obtainable

Bureaucratic complexity

Solution 2: Decentralization

Insufficient transparency and rule of law

Self-organizing market model

Decision – integrated planning for all product flows

Scope of product flows to optimize

Purchasing

Transport – raw materials

Production

Transport – products

Sales

Optimization across the entire value chain to find a global optimum for the integrated system

McKinsey proprietary OptimEX solution was developed as a trade-off between ease of implementation and flexibility

Ease of implementation

Hard-coded standard model **OptimEX** ERP+/large model solution **Flexibility**

Approach – model representation tailored to the problem on hand CENTRAL MATHEMATICAL SCHEME

Mapping each business process to the mathematical scheme

Purchasing

Transport

Production

Transport

Sales

Representation according to one identical scheme in OptimEX

- Product in
- Location in

- Product out
- Location out

Input and output of the model

Input

- Demand curves
 - Export markets
 - Domestic market
- Supply curves
- Production
 - Variable cost
 - Capacities
 - Coefficients
- Transport routes and tariffs

Output

- Sales plan by product
- Purchasing plan by raw material
- Utilization for every production unit
- Optimal transportation routes
- P&L forecast
- Report of major bottlenecks

Optimization of feedstock allocation and sales channels – sample output

Thousand tons/month

Optimum plan

BU plan

Optimum plan

- Increase production and export of 2-EH
- Reduce production of butyl-alcohols (no export)
- Increase domestic sales of isobutylalcohols

Effect

• xx million USD

Feedstock allocation

Conversion of propylene

Reallocation of propylene to 2-EH instead of butyl alcohol

No change in production of isobutyl alcohol

Sales channels

Sales volumes

- Discontinuation of unprofitable butyl alcohol exports
- Reallocation of isobutyl alcohols to domestic buyers instead of export

Organizational implications of integrated planning – example: shift of influence from BUs to central planning

Role of BUs in planning

- Set production volumes and sales volumes
- Coordinate with upstream BUs

Role of FPD

- Iron out details in product balance
- Set transfer prices and processing fees to equalize BU profits

Role of BUs in planning

- Supply data on production assets, product, and feedstock markets
- Verify feasibility of central plan

Role of FPD

 Dictate all purchasing, transport, production, and sales volumes

Key implementation challenges

Explanation

 Central plan may help one business unit and hurt another (e.g., by selling an intermediate product instead of further conversion)

Mitigation plan

 Organize business units as cost centers to incentivize them to fulfil a central plan with minimum cost

Insufficient degrees of freedom

Internal

political

opposition

- Profit potential of central planning depends on a sufficient number of alternatives (the more, the better)
- Sales and purchasing departments must work particularly hard to seek out new buyers and sellers
- Incentivize sales and purchasing departments to submit a higher number of realistic bids and offers (some of which will not be used)

Poor quality of input data

- Model is particularly sensitive to lowquality input data concerning
 - Demand and supply curves
 - Capacities and technical constraints
 - Input data manipulation

- Set up active input data controlling
 - Comparison of submitted data with realized actuals
 - Clear consequences for submission of low-quality data

Be aware of "one-size-fits-all" solutions!
Organizational integrated planning issues, tradeoffs and concrete measures always have to be
thoroughly analyzed case by case!

OptimEX is a good base for optimization approaches in other appropriate industries

Conditions

- Production alternatives:
 Client is able to switch production from one process or location to another
- Commodity products:
 The products or inputs at different locations are similar

CLIENT EXAMPLES

Example 2 – extending optimization scope to an entire

Outlook – key organizational and strategic challenges of petroleum value chain optimization

Market modeling

- Capturing demand and supply volumeprice relationships
- Utilizing market models for operational planning decisions

Customer service level management

- Understanding relationship between customer service and price
- Utilization service/price trade-off in logistics planning decisions

Organizational implementation

 Establishing incentives and responsibilities that support reaching global optimums – while still motivating for local improvement

Thank you!

Markus Leopoldseder Senior Practice Manager

Background

- Practice Manager of European SCM Practice
- Degree in Electrotechnical Engineering from TU Wien
- 10 years' experience at IBM in sales, project management, and consulting functions
- Co-author of 3 books on SCM and global production strategy

Project experience

- SC process optimization in high tech, consumer goods and retail sector
- Logistics network design
- Global production strategy
- Support of more than 250 SC projects worldwide

Contact

Markus_Leopoldseder@mckinsey.com

Christian Gilow System Analyst Expert

- Degree in Mathematics from University Heidelberg
- More than 20 years' experience in supply chain modelling and optimization

- Logistics network design
- Production network optimization
- Forecasting and inventory management
- Integrated supply chain master planning in process industry

Christian_Gilow@mckinsey.com