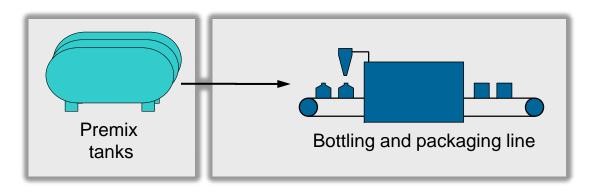
Der Blockplanungsansatz: Eine Fallstudienanwendung aus der Getränkeindustrie

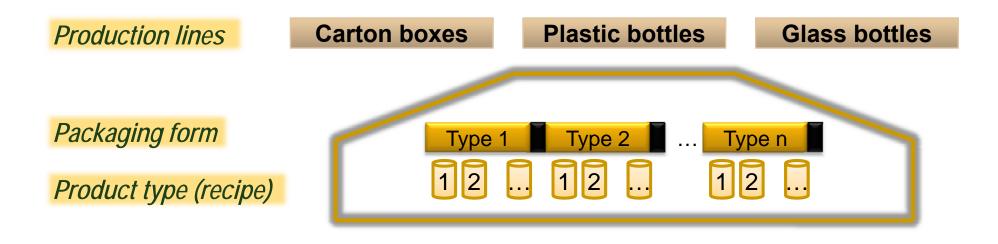
H.-O. Günther

Dept. of Production Management, TU Berlin, Germany, email: <u>hans-otto.guenther@tu-berlin.de</u>


GOR SCM AG, Oberursel, April 03, 2009

>Background: make-and-pack production

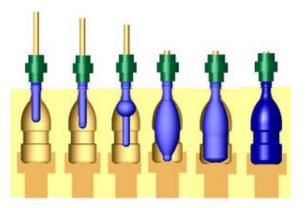
- Block planning principle
- Model formulation
- > Computational results
- > Conclusions


Make-and-pack production

- To be found in the consumer goods industry, e.g. in the production of food, beverages, detergents, cosmetics.
- There is often a single bottleneck stage, e.g. a combined final bottling and packaging stage.
- > Often highly capital-intensive production equipment used, e.g. investment of € 20 Mio for a bottling and packaging line.

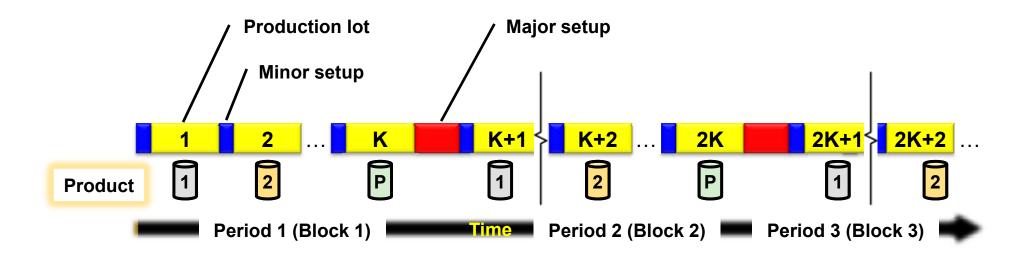
Product-line assignment

Production of beverages



Setup drivers

- Major setup times for changing the packaging format
 - > e.g. 14 hours for setting up a stretch blow molding machine



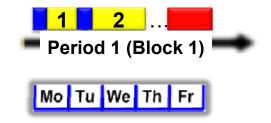
- Minor setup times for changing the product type (recipe)
 - > e.g. 90 minutes for cleaning pipelines and adjusting tanks

Basic block planning principle

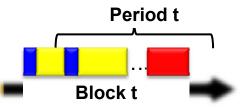
Natural production sequence, e.g. from light to dark

- Establishment of cyclical production patterns
- > One block per week with flexible start-off time

Key issues of block planning

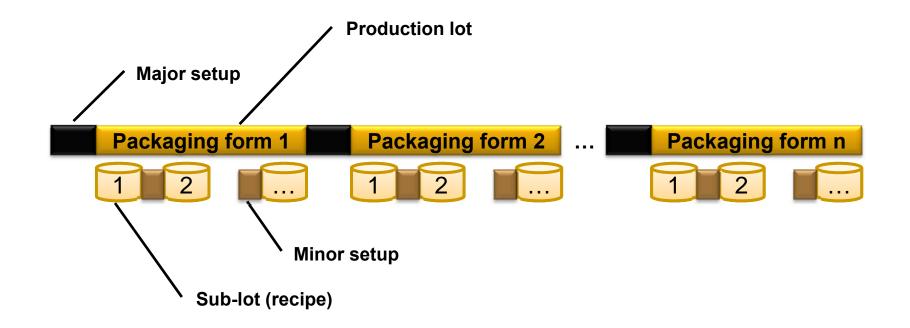

Given setup families and fixed setup sequences within a family

1 2 ... K


Binary variables for product setups and variable lot sizes

Each block is assigned to a macro-period, e.g. a week.

Demand is assigned to micro-periods, e.g. days.



The start and ending times of the blocks are variable, i.e. blocks may start in a previous period, but have to be completed before the end of the period they are assigned to.

Objective function: Minimize total processing, setup and holding costs

Block pattern for a bottling line

- > Applications in consumer goods industry:
 - > yoghurt production (cf. Lütke Entrup et al. 2005)
 - > hair dye production (cf. Günther et al. 2006)

Production lots only activated if the block is set up $\forall l \in L, t \in T$

Lot size enforced to zero if no setup takes place

 $X_{kl} \le M_{kl} \cdot \rho_{kl}$

 $\sum \rho_{kl} \leq \sigma_{lt} \cdot \left| K_{lt} \right|$

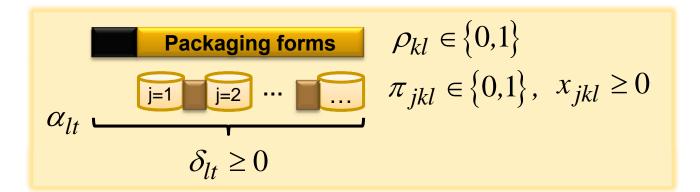
 $k \in K_{lt}$

$$\forall k \in K_l, l \in L$$

$$\begin{aligned} \pi_{jkl} &\in \left\{0,1\right\} \\ \hline \mathbf{j=1} \quad \mathbf{j=2} \\ x_{jkl} &\geq 0 \end{aligned} \ \ \rho_{kl} \in \left\{0,1\right\}$$

 $\forall k \in K_l, l \in L$

Sub-lots only activated if the production lot is set up

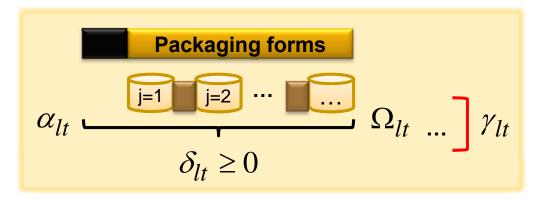

$$\sum_{j \in J_{kl}} \pi_{jkl} \le \rho_{kl} \cdot \left| J_{kl} \right|$$

 $x_{jkl} \le m_{jkl} \cdot \pi_{jkl}$

$$\sum_{j \in J_{kl}} x_{jkl} = X_{kl}$$

Sub-lot size enforced to zero if no setup takes place $\forall j \in J_{kl}, k \in K_l, l \in L$

Allocation of production lot size between sub-lots $\forall k \in K_l, l \in L$


$$\delta_{lt} = \sum_{k \in K_{lt}} \left(S_l \cdot \rho_{kl} + \sum_{j \in J_{kl}} \left(s_l \cdot \pi_{jkl} + a_{jkl} \cdot x_{jkl} \right) \right)$$

Duration of a block $\forall l \in L, t \in T$

Start time of a block

 $\alpha_{lt} \ge \underline{\alpha}_{lt} \qquad \forall l \in L, t \in T$

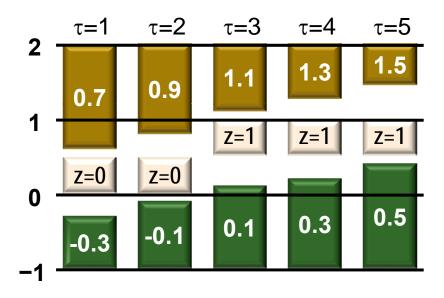
Succession of blocks $\alpha_{lt} \ge \alpha_{l,t-1} + \delta_{l,t-1} \quad \forall l \in L, t = 2, ..., |T| \text{ with } \alpha_{l1} = 0$

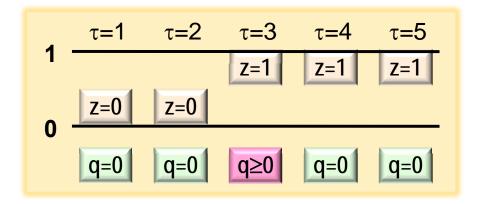
Blocks with production lots must be completed before the end of the week.

$$\alpha_{lt} + \delta_{lt} \le \gamma_t \qquad \qquad \forall l \in L, t \in T$$

End time of production lots relative to the start time of the block

$$\begin{split} \Omega_{kl} &= \Omega_{k-1,l} + S_l \cdot \rho_{kl} + \sum_{j \in J_{kl}} \left(s_l \cdot \pi_{kl} + a_{jkl} \cdot x_{jkl} \right) \\ &\forall k \in K_{lt}, l \in L, t \in T \text{ with } \Omega_{0l} = \alpha_{lt} \end{split}$$




Heaviside function for tracing the daily completion of production lots

$$\frac{\tau - \Omega_{kl}}{d_{kl}} \le z_{kl\tau} \le 1 + \frac{\tau - \Omega_{kl}}{d_{kl}}$$

$$\forall k \in K_l, l \in L, \tau \in D_{kl}$$

> Example:
$$\Omega = 2.5; \tau = 1,...,5$$

Production output achieved when the heaviside variable switches from 0 to 1

$$\begin{split} &\sum_{j \in J_{kl}} q_{jl\tau} \leq M_{kl} \cdot \left(z_{kl\tau} - z_{kl,\tau-1} \right) & \forall k \in K_l, l \in L, \tau \in D_{kl} \text{ with } z_{kl\underline{d}_{kl}} = 0 \\ &\sum_{\tau \in D_{kl}} q_{jl\tau} = x_{jkl} & \forall j \in J_{kl}, k \in K_l, l \in L \end{split}$$

Inventory balances for each product and day

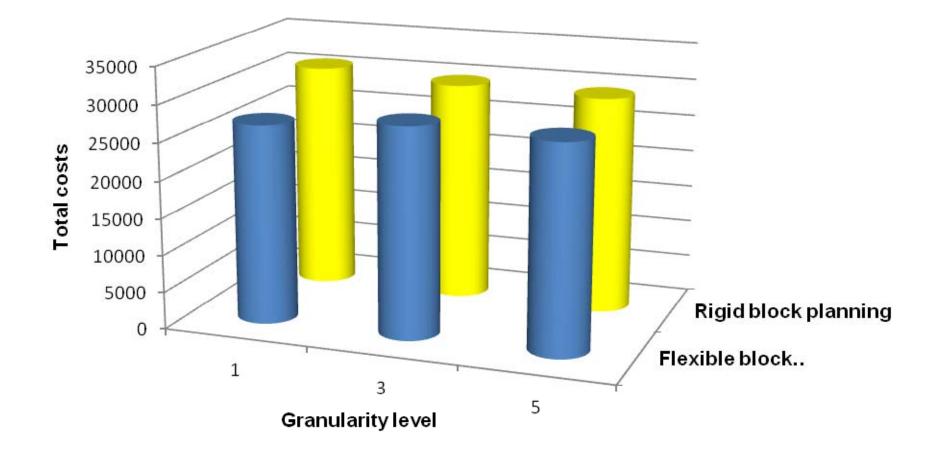
$$F_{p\tau} = F_{p,\tau-1} + \sum_{l \in L_p} \sum_{j \in J_{pl}} q_{jl\tau} - E_{p\tau} \qquad \forall p \in P, \tau \in D \text{ with } F_{p0} = \text{given}$$

Objective function: Minimize total costs for production, clean-outs, major and minor setups, and inventory holding

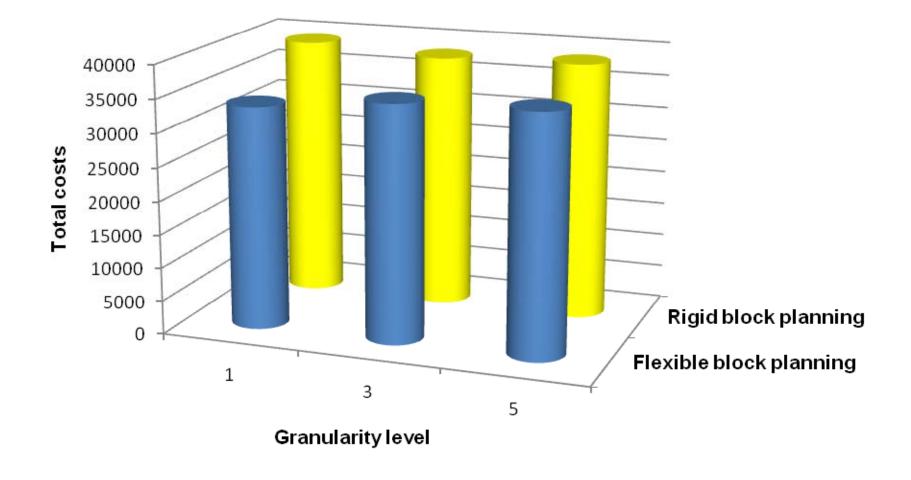
$$\min \begin{bmatrix} \sum_{l \in L} \sum_{t \in T} c_l^{Prod} \cdot \delta_{lt} + \sum_{l \in L} \sum_{t \in T} c_l^{Clean} \cdot \sigma_{lt} + \sum_{l \in L} \sum_{k \in K_l} c_l^{Maj} \cdot \rho_{kl} + \\ \sum_{l \in L} \sum_{k \in K_l} \sum_{j \in J_{kl}} c_l^{Min} \cdot \pi_{jkl} + \sum_{p \in P} \sum_{\tau \in D} c_p^{Inv} \cdot F_{p\tau} \end{bmatrix}$$

Computational Experiments

Product-line assignments in the FRUTADO case study



Experimental setting


- Implementation using ILOG OPL Studio 6.1.1 with CPLEX 11.2
- PC: Dual Xeon Quad Core 2.5 GHz processor and 4 GB RAM
- ➤ Two capacity load scenarios: 75% and 90%
- Three demand granularities: 1 (low), 3 (medium) ,5 (high)
- Daily demand randomly assigned to DCs
- > All other data taken from the FRUTADO case

Comparison of rigid vs. flexible block planning, i.e. one-week vs. two-week time window per block

Numerical results: 75% capacity load scenario

Numerical results: 90% capacity load scenario

CPU times for an extended model formulation

➢ 75% capacity load	Granularity level	CPU time (flexible / rigid block planning) in sec		
		min	max	
	1	4 / 5	7 / 358	
	3	10/9	102 / 88	
	5	10 / 16	69 / 109	
		CPU time		

	Granularity level	CPU time (flexible / rigid block planning) in sec	
90% capacity load		min	max
	1	3/8	6 / 1991
	3	16 / 38	56 / 1080
	5	70 / 94	983 / 560

Conclusion

- To support block planning in a make-and-pack environment a novel MILP model formulation based on a continuous representation of time has been developed.
- The model formulation exploits human expertise on the definition of setup families and the sequence of production runs within a block.
- The model considers the daily assignment of demand elements.
- Flexible block planning appears to be superior compared to rigid block planning.
- MILP modelling provides a flexible framework to integrate many application-specific features.