

Portfolio Optimization: A Technical Perspective

Michael Bussieck

Franz Nelißen

MBussieck@gams.com

FNelissen@gams.com

GAMS Software GmbH

http://www.gams.de

GOR Workshop "Financial Optimization and Optimal Pricing Strategies" BASF, Ludwigshafen, Germany, May 22-23, 2006

Agenda

- GAMS Software and GAMS
- Mean Variance Model
- Adding Business Rules
- Scenario Optimization Models
- Grid Computing

GAMS Dev. / GAMS Software

- Roots: Research project World Bank 1976
- Pioneer in Algebraic Modeling Systems used for economic modeling
- Went **commercial** in 1987
- Offices in Washington, D.C and Cologne
- Professional software tool provider
- Broad academic & commercial user base
- Operating in a **segmented niche market**

Typical Application* Areas:

Agricultural Economics

Chemical Engineering

Econometrics

Environmental Economics

Finance

International Trade

Macro Economics

Management Science / OR

Micro Economics

Applied General Equilibrium

Economic Development

Energy

Engineering

Forestry

Logistics

Military

Mathematics

Physics

* Illustrative examples in the GAMS Model Library

Algebraic Modeling Language

- Efficient handling of mathematical optimization problems
- **Declarative** approach: Algebraic model representation
 - is close to mathematical formulation:
 - Variables, constraints with arbitrary names
 - Sets, indices, algebraic expressions, powerful sparse index and data handling
 - is a self containing and executable description of the mathematical optimization problem
 - contains no hints how to process it
- Also procedural elements: Loops, procedures, macros, …

Algebraic Modeling Language cont'd

- Different Layers with separation of:
 - Model and data: Core model is independent of data and scalable
 - Model, solution methods and solver
 - Model and operating system
 - Model and application
- Wide range of **supported model types**
- Large libraries of example models and blue prints available online

System Overview

GAMS IDE

gamside: D:\support\eva.gpr	
Image: State of the state	
Year Di Chattdata gdx Stit Entry Symbol Type Dim Nr Elem 10 GanttData Par 3 14 Plane Index (empty) 11 GanttData Par 2 200 11 IBM x0 36742.5472285417 Image: StockData 13 ScenarioData Par 2 136,000 DELL x0 38742.5472285417 Image: StockData 13 ScenarioData Par 2 2,500 90 100 100 11 Surface Par 2 800 38742.5472285417 Image: StockData 38,800 38,800 38,820 11 Surface Par 2 800 100 SUN x0 38742.5472285417 Image: StockData	38,840
<pre> Ho active process chartdat Job chartdat.gms Start 05/05/06 13:08:00 GAMS Software GmbH Starting Compilation Starting execution Starting execution Job chartdat.gms Stop 05/05/06 13:08:01 elapsed 0:00:01.422 Close Open Log □ Summary only ▼ Update </pre>	9 150

Portfolio Optimization Models

Mean-Variance Model

Portfolio Models for Fixed Income

Scenario Optimization

Stochastic Programming

The Mean-Variance Model

- Markowitz (1952)→Nobel prize 1990
- Given: Some investments x_i with historical data:
 - **Expected returns** of investments: μ_i (**Mean** of historical returns)
 - Risk: Variance of investments Qi,j
- Goal: Balance risk r of portfolio against expected returns of portfolio
- Idea: Minimize variance v of portfolio for a given target return r

MV Model Algebra

i=1

 $\sum x_i = 1$

 $x_i \geq 0$

i=1

s.t. $\sum_{i=1}^{l} \mu_i x_i \ge r$

Target return

Budget constraint

No short sales

Declarative Model

12

Data: Variance/Covariance Matrix

DE gamside: D:\work\qmeanvarx.gpr - [D:\work\qmeanvar.gdx]																
File Edit Search Windows Utilities Help																
qmeanvar.gdx qmeanvar.gms qmeanvar.lst																
Entry	Symbol	Туре	Dim	Nr Elem	-	qoi	g: covar	iance m	atrix							
8	bdata	Par	2	31						Diana	Indox (o	motul				
22	22 binsum Equ 1 7 Plane Index (empty)															
16	budget	Equ	0	1			cn	fr	gr	jp	sw	uk	us			-
1	i	Set	1	7		cn	42,180									
2	j	Set	1	7		fr	20,180	70,890								
20	maxdec	Equ	1	7		gr	10,880	21,580	25,510							
18	maxinc	Equ	1	7		јр	5,300	15, <mark>410</mark>	9,600	22,330						
21	mindec	Equ	1	7		sw	12,320	23,240	22,630	10,320	30,010					
19	mininc	Equ	1	7		uk	23,840	23,800	13,220	10,460	16,360	42,230				
3	mu	Par	1	7		us	17,410	12,620	4,700	1,000	7,200	9,900	16,420			
26	р	Set	1	8										1		
7	pd	Set	1	5												
27	рр	Set	1	4												
4	q	Par	2	28												
5	qorg	Par	2	28				4	_	-						
30	Report	Par	3	35			Reset	Decir	nals ^I	Squee	eze defa	ults				
10	ret	Var	0	1	•		Sort		³ 0	ordering:	12					

Procedural Elements

```
Sodxin data
                                                   # get data & setup model
$load i mu q
q(i,j) = 2*q(j,i); q(i,i) = q(i,i)/2;
Model var / all / ;
set p points for efficient frontier /minv, p1*p8, maxr/,
   pp(p) points used for loop
                                         8a*la
                                                       /;
parameter minr, maxr,rep(p,*), repx(p,i);
solve var minimizing v using gcp;
                                 #find portfolio with minmal variance
minr = r.l; rep('minv','ret') = r.l;
rep('minv', 'var') = v.l; repx('minv',i) = x.l(i);
solve var maximizing r using qcp;
                                     #find portfolio with maximal return
```

```
maxr = r.l; rep('maxr','ret') = r.l;
rep('maxr','var')=v.l;repx('maxr',i) = x.l(i);
```


Efficient Frontier

Efficient Portfolios

Modeling Issues

- Basic MV-Model: Quadratic model
- GAMS Model type: NLP or QCP
- Solver
 - NLP Codes (CONOPT, MINOS,...) or
 - QCP Codes (Cplex, Mosek, Xpress)
 - take advantage of special structure
 - include strong machinery from linear programming world (pre-solve techniques)
- Large problem instances can be solved routinely

Incorporating Business Rules

- Institutional or legal requirements
- Additional constraints, which have to be satisfied: Trading restrictions
- Independent of risk model
- Not defined by modeling experts

Simple Trading Restrictions

- Do not change the model type
- Examples:
 - Short selling
 - Risk free borrowing
 - Upper or lower bounds on certain instruments

More Complex Trading Restr.

- Require introduction of integer (binary) variables
- Quadratic model with integer variables
- GAMS model type: MINLP or MIQCP

Cardinality / Threshold Constraint

 Cardinality Constraint: Restricts number of investments y_i in a portfolio:

$$\sum_{i} y_{i} \leq C, y_{i} \in \{0, 1\}, \ i = 1, \dots, n$$

• Threshold Constraint: Investments x_i can only be purchased at certain minimum $I_{l,i}$ or maximum $I_{u,i}$:

$$l_{l,i} \le x_i * y_i \le l_{u,i}, y_i \in \{0,1\}, i = 1,...,n$$

"Zero or Range"-Constraint

- Revision of existing (not optimized) portfolio
- "Zero or Range"-Constraint: Either no trade or the trade must stay between pre-defined ranges both for purchase and selling
- Portfolio turnover: The total purchase of investments x_i may not exceed some threshold τ

Trading Restrictions: Data

D:\projects\gor-basf\qmeanvar.gdx														
	core.gm	ns core.ls	t mo	d.gms	mod.lst	qmeanvar.	gdx	qmea	anvar.g	ims qr	neanva	ar.lst		
	Entry	Symbol	Туре	Dim	Nr Elem	_	bda	ata: p	ortfolio	data a	and tr	ading	restriction	ıs
	7	bdata	Par	2	31									
	21	binsum	Equ	1	7					Plane	Index	: (emp	vty)	
	15	budget	Equ	0	1			ماط		111223-023-0	luceius			
	1	i	Set	1	7				umin	umax		imax	l	
	2	j	Set	1	7		cn c	0.20	0.03	0.11	0.02	0.20	_	
	19	maxdec	Equ	1	7		fr	0.20	0.04	0.10	0.02	0.15	_	
	17	maxinc	Equ	1	7		gr		0.04	0.07	0.04		_	
	20	mindec	Fau	-1	7		jp		0.03	0.11	0.04		_	
	18	mining	Equ		. 7		SW	0.20	0.03	0.20	0.04	0.10		
	10	minine	Equ 5				uk	0.20	0.03	0.10	0.04	0.15		
	3	mu	Par	1	/		us	0.20	0.03	0.10	0.04	0.20		
	25	р	Set	1	8]	

e.g. cn: either no trade (20%) or new share between 23-31% (u) or between 0-18% (l)

GAMS Formulation

Variables

- xi(i) fraction of portfolio increase,
- xd(i) fraction of portfolio decrease,
- y(i) binary switch for increasing current holdings of i,

z(i) binary switch for decreasing current holdings of i; Binary Variables y, z;

Positive variables xi, xd;

Equations

- xdef(i) final portfolio definition,
- maxinc(i) bound of maximum lot increase of fraction of i, mininc(i) bound of minimum lot increase of fraction of i, maxdec(i) bound of maximum lot decrease of fraction of i, mindec(i) bound of minimum lot decrease of fraction of i,
- binsum(i) restricts use of binary variables,
- turnover restricts maximum turnover of portfolio;

GAMS Formulation cont'd

xdef(i).. x(i) =e= bdata(i,'old') - xd(i) + xi(i); maxinc(i).. xi(i) =l= bdata(i,'umax')* y(i); mininc(i).. xi(i) =g= bdata(i,'umin')* y(i); maxdec(i).. xd(i) =l= bdata(i,'lmax')* z(i); mindec(i).. xd(i) =g= bdata(i,'lmin')* z(i); binsum(i).. y(i) + z(i) =l= 1; turnover.. sum(i, xi(i)) =l= tau;

Efficient Frontier ($\tau = 0.3$)

Portfolios ($\tau = 0.3$)

Solution Point

27

Share of Portfolio

Limitations of the MV-Approach

- Quadratic model
- **Risk Measure**: Variance not appropriate for asymmetric and skewed distributions
- **Data**: Estimation errors in the covariance matrix
- **Robustness**: MV efficient portfolios are not robust to small data changes
- Single period model

Scenario Optimization

- Captures complex interactions between multiple risk factors using scenarios
- Scenarios can be quite general describing different kinds of risk
- Scenario generation methods problem specific
- Models are solved over all scenarios
- Different methods of risk measurement

Scenario Optimization Models

- Mean Absolute Deviation Models
- Index Tracking Models
- Expected Utility Models
- VAR Models (linear Version: CVAR)

Mean Absolute Deviation - Model

$$\begin{aligned} \text{Minimize} \sum_{l \in \Omega} p^l \middle| V(x; P^l) - V(x; \bar{P}) \\ \text{subject to} : \sum_{i \in \Omega} \bar{P}_i \, x_i \geq \mu V_0 \end{aligned}$$

i=1

I.

Target Value

$$\sum_{i=1}^{n} P_{0,i} x_i = V_0$$
$$x_i \ge 0$$

Budget constraint

Linear Version

$$\begin{split} & \textit{Minimize} \sum_{l \in \Omega} p^l y^l \\ & \textit{subject to} : y^l \geq V(x; P^l) - V(x; \bar{P}) \ \forall \ l \in \Omega \\ & \text{pos. Dev} \\ & y^l \geq V(x; \bar{P}) - V(x; P^l) \ \forall \ l \in \Omega \\ & \text{neg. Dev} \\ & \sum_{i=1}^n \bar{P}_i \ x_i \geq \mu V_0 \\ & \text{Target Value} \\ & \sum_{i=1}^n P_{0,i} x_i = V_0 \\ & \text{Budget constraint} \\ & x_i \geq 0; \ y^l \geq 0 \end{split}$$

GAMS Formulation

VARIABLES	x(i) Value(l) ExpValue MAD Y(l)	"Current "Final Pc "Expected "Mean Abs "Measures	Holdi ortfol l fina solute s devi	ngs of Stock I in io Value in Scenar l Portfolio Value" Deviation", ation in scenario	<pre>monetary io l", , l";</pre>	Units",
POSITIVE	VARIABLES	x(i), y(l);			
EQUATIONS	MADDef posDef(1) negDev(1) ValDef(1) ExpValLim	"Mean Abs "Positive "Negative , ExpValDe it, Budget	olute Devi Devi ef, Def;	Deviation of Port ation in Scenario ation in Scenario	folio" l", l",	
MADDef posDev(l) negDev(l) ValDef(l) ExpValDef ExpValLimi BudgetDef	MAD y(1 y(1 Val Exp Exp sum) ue(l) Value Value (i, x(i))	=E = s $=G = V$ $=E = s$ $=E = s$ $=G = M$ $=E = E$	um(l, prob(l) * y(alue(l) - ExpValue xpValue - Value(l) um(i, (1+ScenRet(i um(l, prob(l) * Va u * Budget; udget;	l)); ; ; ,l)) * x lue(l));	(i));

Modeling Issues

- Linear Model
- Same results as MV-Model if returns are multivariate normally distributed
- MIP Model, if (complex) business rules
- Variations:
 - Weights on deviations
 - Left (right) semi-absolute deviation

More Theory and Templates

- Practical Financial Optimization (forthcoming) by S. Zenios
- A Library of Financial Optimization Models (forthcoming) by A. Consiglio, S. Nielsen, H. Vladimirou and S. Zenios
- Financial Optimization by S. Zenios (ed.)
- Online:
 - Course Notes "Financial Optimization": http://www.gams.com/docs/contributed/financial/
 - GAMS Model Library: http://www.gams.com/modlib/libhtml/subindx.htm

Summary

- Portfolio Optimization is one of the success stories in OR
- Rich set of different risk models available
- Large problem instances can be modeled and solved with standard software tools
- Integration of business rules increases model complexity, but is essential for acceptance of advanced techniques
- Algebraic Modeling Languages are powerful and reliable tools for the rapid development and implementation of these models
- *"If the only tool you have is a hammer, you will see every problem as a nail."* (Abraham Maslow)

New Opportunities

- Considerer high throughput computing
- How to convert from serial to parallel and distributed computing
- High Throughput Computing via the Condor system and the SUN Grid Engine connected to GAMS
- Multi CPU desktop systems available
- GAMS introduced an experimental grid computing facility

What is Grid Computing?

- A pool of connected computers managed and available as a common computing resource
 - Allows parallel task execution
 - Allows effective sharing of CPU power
 - Licensing issues
 - Scheduler handles management tasks
 - Can be rented or owned in common
 - E.g. Condor, Sun Grid Engine, Globus

Economics of Grid Computing

- Yearly cost, 2-CPU workstation: \$5200
 - Hardware \$1200
 - Software \$4000
- Hourly cost on the grid: \$2
 - \$1/hour for CPU time (to grid operator)
 - \$1/hour for software (GAMS, model owner)
- 1 workstation == 50 hrs/week grid time
- Up-front vs. deferred, as-needed costs

Use a GAMS Grid

- Solve the scenarios in parallel, e.g.
 - Sequential time: 50 hours
 - 200 CPUs: 15 minutes
- Cost is \$100
- No programming required (almost)
- Model stays maintainable
- Separation of model and solution maintained

Results for 4096 MIPS

- Submission start Jan 11 at 16:00 pm
- All job submitted by Jan 11 at 23:00 pm
- All jobs returned by Jan 12, 12:40 pm
 - -20 hours wall time, 5000 CPU hours
 - Peak number of CPUs: 500
- Different Instance:
 - -24 hours wall time, 3000 CPU hours

Condor Pool Statistics

Serial Solve Loop

Loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;

Solve minvar min var using miqcp ;

xres(i,p) = x.l(i);

report(p,i,'inc') = xi.l(i);

report(p,i,'dec') = xd.l(i));

Solve Submit Loop

Parameter **h(p)** store the instance handle; minvar.**solvelink = 3**; ! turn on grid option Loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;

Solve minvar min var using miqcp;

h(pp) = minvar.handle); ! save instance handle

Solution Collection Loop

Repeat

loop(p(pp)\$h(p),

```
if(handlestatus(h(p))=2,
```

minvar.handle = h(p); execute_loadhandle minvar;

xres(i,p)=x.l(i); report(p,i,'inc')=xi.l(i); report(p,i,'dec')= xd.l(i)

display\$handledelete(h(p)) 'Could not remove handle';

h(p) = 0)); ! indicate solution is loaded

if(card(h), execute 'sleep 1');

until card(h) = 0 or timeelapsed > 100;

Conclusions

- Massive parallel and distributed computing environments are becoming available (SUN just introduced a 5000 node network in the US giving 100 hours away for free for experiments).
- Simple language extensions in existing modeling systems provide easy access.
- Today's modeling languages are well suited to experiment with coarse grain parallel approaches for solving difficult problems.
 - Latest Example: Ferris & Bussieck: Solving three previously unsolved problems (timtab-2, roll3000, and (*swath*)) from MIPLIB

The End

Thank you! ... Questions?

Contacting GAMS

• Europe:

GAMS Software GmbH Eupener Str. 135-137

50933 Cologne

Germany

Phone: +49 221 949 9170

Fax: +49 221 949 9171

Http://www.gams.de

• USA:

GAMS Development Corp. 1217 Potomac Street, NW Washington, DC 20007 USA Phone: +1 202 342 0180 Fax: +1 202 342 0181 Http://www.gams.com