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Agenda
• GAMS Software and GAMS
• Mean Variance Model
• Adding Business Rules
• Scenario Optimization Models
• Grid Computing 
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GAMS Dev. / GAMS Software
• Roots: Research project World Bank 1976
• Pioneer in Algebraic Modeling Systems

used  for economic modeling
• Went commercial in 1987
• Offices in Washington, D.C and Cologne
• Professional software tool provider
• Broad academic & commercial user base
• Operating in a segmented niche market
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Typical Application* Areas:
Agricultural Economics Applied General Equilibrium

Chemical Engineering Economic Development

Econometrics Energy 

Environmental Economics Engineering

Finance Forestry

International Trade Logistics

Macro Economics Military

Management Science / OR Mathematics

Micro Economics Physics
* Illustrative examples in the GAMS Model Library
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Algebraic Modeling Language
• Efficient handling of mathematical optimization 

problems
• Declarative approach: Algebraic model 

representation
– is close to  mathematical formulation:

• Variables, constraints with arbitrary names
• Sets, indices, algebraic expressions, powerful sparse index and 

data handling
– is a self containing and executable description of the 

mathematical optimization problem
– contains no hints how to process it

• Also procedural elements: Loops, procedures, 
macros, …
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Algebraic Modeling Language cont’d

• Different Layers with separation of: 
– Model and data: Core model is independent of 

data and scalable
– Model, solution methods and solver
– Model and operating system
– Model and application

• Wide range of supported model types
• Large libraries of  example models and 

blue prints available online
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System Overview

User Interfaces

GAMS Compiler
and Execution

System

Solvers BARON, COIN, CONOPT, 
CPLEX, DECIS, DICOPT, 
KNITRO, LGO,MINOS, 
MOSEK, OQNLP, PATH, 
SNOPT, XA, XPRESS, …

Offline / BatchInteractive

Productivity Tools:
• Integrated 

Development 
Environment

• Model Debugger and 
Profiler

• GDX Tools
• Data Browser
• Charting Engine
• Benchmarking
• Deployment System
• Quality Assurance and 

Testing

Connectivity
Tools:
• Uniform Data 

Exchange: 
ASCII or GDX
(ODBC, SQL, 
XLS, XML)

• Data API
• Ext. Programs

– EXCEL 
– MATLAB
– GNUPLOT,..
– C, Delphi, .. LP-MIP-QCP-MIQCP-NLP-MINLP-CNS-MCP-MPEC

MPSGE, global, and stochastic optimization
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GAMS IDE
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Portfolio Optimization Models

• Mean-Variance Model

• Portfolio Models for Fixed Income

• Scenario Optimization

• Stochastic Programming
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The Mean-Variance Model
• Markowitz (1952) Nobel prize 1990
• Given: Some investments xi with historical 

data:
– Expected returns of investments: µi

(Mean of historical returns)
– Risk: Variance of investments Qi,j

• Goal: Balance risk r of portfolio against 
expected returns of portfolio

• Idea: Minimize variance v of portfolio for a 
given target return r
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MV Model Algebra
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Declarative Model
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Data: Variance/Covariance Matrix
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Procedural Elements
$gdxin data                                           # get data & setup model
$load i mu q                                                        
q(i,j) = 2*q(j,i) ;  q(i,i) = q(i,i)/2;
Model var / all / ; 
set p     points for efficient frontier /minv, p1*p8, maxr/,

pp(p) points used for loop          /      p1*p8      /;
parameter minr, maxr,rep(p,*),  repx(p,i);

solve var minimizing v using qcp;         #find portfolio with minmal variance
minr = r.l; rep('minv','ret') = r.l; 
rep('minv','var') = v.l; repx('minv',i) = x.l(i);

solve var maximizing r using qcp; #find portfolio with maximal return
maxr = r.l; rep('maxr','ret')= r.l;
rep('maxr','var')=v.l;repx('maxr',i)= x.l(i);

loop(pp, #calculate efficient frontier
r.fx = minr + (maxr-minr)/(card(pp)+1)*ord(pp);
solve var minimizing v using qcp;
rep(pp,'ret') =r.l;rep(pp,'var') = v.l;repx(pp,i)= x.l(i); 

); 
Execute_Unload 'results.gdx',rep, repx;        # export results to GDX & Excel
Execute 'GDXXRW.EXE results.gdx par=repx rng=Portfolio!a1 Rdim=1';
Execute 'GDXXRW.EXE results.gdx par=rep  rng=Frontier!a1  Rdim=1';
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Efficient Frontier
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Efficient Portfolios
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Modeling Issues
• Basic MV-Model: Quadratic model
• GAMS Model type: NLP or QCP
• Solver

– NLP Codes (CONOPT, MINOS,...) or
– QCP Codes (Cplex, Mosek, Xpress)

• take advantage of special structure
• include strong machinery from linear programming 

world (pre-solve techniques)

• Large problem instances can be solved 
routinely
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Incorporating Business Rules

• Institutional or legal requirements
• Additional constraints, which have to be 

satisfied: Trading restrictions
• Independent of risk model
• Not defined by modeling experts
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Simple Trading Restrictions

• Do not change the model type
• Examples:

– Short selling
– Risk free borrowing
– Upper or lower bounds on certain instruments
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More Complex Trading Restr.

• Require introduction of integer (binary) 
variables

• Quadratic model with integer variables
• GAMS model type: MINLP or MIQCP
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Cardinality / Threshold Constraint
• Cardinality Constraint: Restricts number of 

investments yi in a portfolio:

• Threshold Constraint: Investments xi can only be 
purchased at certain minimum ll,i or maximum lu,i: 

{ } niyCy i
i

i ,....,1,1,0, =∈≤∑

{ } niylyxl iiuiiil ,....,1,1,0,* ,, =∈≤≤
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“Zero or Range”-Constraint

• Revision of existing (not optimized) portfolio
• “Zero or Range”-Constraint: Either no trade 

or the trade must stay between pre-defined 
ranges both for purchase and selling

• Portfolio turnover: The total purchase of 
investments xi may not exceed some 
threshold τ
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Trading Restrictions: Data

e.g. cn: either no trade (20%) or new share between 23-31% (u)  or between 0-18% (l)
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GAMS Formulation
Variables
xi(i)   fraction of portfolio increase,
xd(i)   fraction of portfolio decrease,
y(i)    binary switch for increasing current holdings of i,
z(i)    binary switch for decreasing current holdings of i;
Binary Variables  y, z; 
Positive variables xi, xd;
Equations  
xdef(i)    final portfolio definition,
maxinc(i)  bound of maximum lot increase of fraction of i,
mininc(i)  bound of minimum lot increase of fraction of i,
maxdec(i)  bound of maximum lot decrease of fraction of i,
mindec(i)  bound of minimum lot decrease of fraction of i,
binsum(i)  restricts use of binary variables,
turnover   restricts maximum turnover of portfolio;
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GAMS Formulation cont’d

xdef(i)..   x(i)   =e=  bdata(i,'old') - xd(i) + xi(i);

maxinc(i).. xi(i)  =l=  bdata(i,'umax')* y(i);
mininc(i).. xi(i)  =g=  bdata(i,'umin')* y(i);
maxdec(i).. xd(i)  =l=  bdata(i,'lmax')* z(i);
mindec(i).. xd(i)  =g=  bdata(i,'lmin')* z(i);

binsum(i).. y(i) + z(i)         =l= 1;

turnover.. sum(i, xi(i))        =l= tau;
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Efficient Frontier (τ =0.3)
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Portfolios (τ = 0.3)
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Limitations of the MV-Approach
• Quadratic model
• Risk Measure: Variance not appropriate for 

asymmetric and skewed distributions
• Data: Estimation errors in the covariance 

matrix
• Robustness: MV efficient portfolios are not 

robust to small data changes
• Single period model
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Scenario Optimization
• Captures complex interactions between 

multiple risk factors using scenarios
• Scenarios can be quite general describing 

different kinds of risk
• Scenario generation methods problem 

specific
• Models are solved over all scenarios
• Different methods of risk measurement
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Scenario Optimization Models

• Mean Absolute Deviation Models
• Index Tracking Models
• Expected Utility Models
• VAR Models (linear Version: CVAR)
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Mean Absolute Deviation - Model
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Linear Version
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GAMS Formulation
VARIABLES x(i)      "Current Holdings of Stock I in monetary Units",

Value(l)  "Final Portfolio Value in Scenario l",
ExpValue "Expected final Portfolio Value",
MAD       "Mean Absolute Deviation",
Y(l)      "Measures deviation in scenario l";

POSITIVE  VARIABLES x(i), y(l);

EQUATIONS MADDef "Mean Absolute Deviation of Portfolio" 
posDef(l) "Positive Deviation in Scenario l",
negDev(l) "Negative Deviation in Scenario l",
ValDef(l), ExpValDef,  
ExpValLimit, BudgetDef;

MADDef ..  MAD          =E= sum(l, prob(l) * y(l));
posDev(l)   ..  y(l)         =G= Value(l) - ExpValue;
negDev(l)   ..  y(l)         =G= ExpValue - Value(l);
ValDef(l)   ..  Value(l)     =E= sum(i, (1+ScenRet(i,l)) * x(i));
ExpValDef ..  ExpValue =E= sum(l, prob(l) * Value(l));
ExpValLimit ..  ExpValue =G= Mu * Budget; 
BudgetDef ..  sum(i, x(i)) =E= Budget;
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Modeling Issues
• Linear Model
• Same results as MV-Model if returns are 

multivariate normally distributed
• MIP Model, if (complex) business rules
• Variations:

– Weights on deviations
– Left (right) semi-absolute deviation
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More Theory and Templates
• Practical Financial Optimization

(forthcoming) by S. Zenios
• A Library of Financial Optimization 

Models (forthcoming) by A. Consiglio, S. 
Nielsen, H. Vladimirou and S. Zenios

• Financial Optimization by S. Zenios (ed.)
• Online:

– Course Notes „Financial Optimization“:
http://www.gams.com/docs/contributed/financial/

– GAMS Model Library: 
http://www.gams.com/modlib/libhtml/subindx.htm

http://www.gams.com/docs/contributed/financial/
http://www.gams.com/modlib/libhtml/subindx.htm
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Summary
• Portfolio Optimization is one of the success stories in OR
• Rich set of different risk models available
• Large problem instances can be modeled and solved with 

standard software tools
• Integration of business rules increases model complexity, 

but is essential for acceptance of advanced techniques
• Algebraic Modeling Languages are powerful and reliable 

tools for the rapid development and implementation of 
these models

“If the only tool you have is a hammer, you will see every 
problem as a nail.” (Abraham Maslow)
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New Opportunities
• Considerer high throughput computing
• How to convert from serial to parallel and 

distributed computing
• High Throughput Computing via the Condor 

system and the SUN Grid Engine connected 
to GAMS

• Multi CPU desktop systems available
• GAMS introduced an experimental grid 

computing facility
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What is Grid Computing?
• A pool of connected computers managed 

and available as a common computing 
resource
– Allows parallel task execution
– Allows effective sharing of CPU power
– Licensing issues
– Scheduler handles management tasks
– Can be rented or owned in common
– E.g. Condor, Sun Grid Engine, Globus
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Economics of Grid Computing
• Yearly cost, 2-CPU workstation: $5200

– Hardware - $1200
– Software - $4000

• Hourly cost on the grid: $2
– $1/hour for CPU time (to grid operator)
– $1/hour for software (GAMS, model owner)

• 1 workstation == 50 hrs/week grid time
• Up-front vs. deferred, as-needed costs
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Use a GAMS Grid
• Solve the scenarios in parallel, e.g.

– Sequential time: 50 hours
– 200 CPUs: 15 minutes

• Cost is $100
• No programming required (almost)
• Model stays maintainable
• Separation of model and solution maintained
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Results for 4096 MIPS
• Submission start Jan 11 at 16:00 pm
• All job submitted by Jan 11 at 23:00 pm
• All jobs returned by Jan 12, 12:40 pm

– 20 hours wall time, 5000 CPU hours
– Peak number of CPUs: 500

• Different Instance:
– 24 hours wall time, 3000 CPU hours
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Condor Pool Statistics
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Serial Solve Loop

Loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;

Solve minvar min var using miqcp ;
xres(i,p)         = x.l(i);

report(p,i,'inc') = xi.l(i);

report(p,i,'dec') = xd.l(i) );
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Solve Submit Loop
Parameter h(p) store the instance handle;

minvar.solvelink = 3;  ! turn on grid option

Loop(p(pp),

ret.fx = rmin + (rmax-rmin)/(card(pp)+1)*ord(pp) ;

Solve minvar min var using miqcp ;

h(pp) = minvar.handle ); ! save instance handle
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Solution Collection Loop
Repeat

loop(p(pp)$h(p),

if(handlestatus(h(p))=2,

minvar.handle = h(p); execute_loadhandle minvar;

xres(i,p)=x.l(i); report(p,i,'inc')=xi.l(i); report(p,i,'dec')= xd.l(i)

display$handledelete(h(p)) 'Could not remove handle';

h(p) = 0) ) ; ! indicate solution is loaded

if(card(h), execute 'sleep 1');

until card(h) = 0 or timeelapsed > 100;
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Conclusions
• Massive parallel and distributed computing 

environments are becoming available (SUN just 
introduced a 5000 node network in the US giving 
100 hours away for free for experiments).

• Simple language extensions in existing modeling 
systems provide easy access.

• Today's modeling languages are well suited to 
experiment with coarse grain parallel approaches 
for solving difficult problems.
– Latest Example: Ferris & Bussieck: Solving three 

previously unsolved problems (timtab-2, roll3000, and 
(swath)) from MIPLIB
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The End

Thank you!
… Questions?
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Contacting GAMS
• Europe:

GAMS Software GmbH
Eupener Str. 135-137
50933 Cologne
Germany
Phone: +49 221 949 9170
Fax:     +49 221 949 9171
Http://www.gams.de

• USA:
GAMS Development Corp. 
1217 Potomac Street, NW 
Washington, DC 20007
USA 
Phone: +1 202 342 0180 
Fax:      +1 202 342 0181
Http://www.gams.com
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